Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x+2\right)^{2}+7x\times 2x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 35x, the least common multiple of 7x,5.
5\left(x^{2}+4x+4\right)+7x\times 2x=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
5x^{2}+20x+20+7x\times 2x=0
Use the distributive property to multiply 5 by x^{2}+4x+4.
5x^{2}+20x+20+7x^{2}\times 2=0
Multiply x and x to get x^{2}.
5x^{2}+20x+20+14x^{2}=0
Multiply 7 and 2 to get 14.
19x^{2}+20x+20=0
Combine 5x^{2} and 14x^{2} to get 19x^{2}.
x=\frac{-20±\sqrt{20^{2}-4\times 19\times 20}}{2\times 19}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 19 for a, 20 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 19\times 20}}{2\times 19}
Square 20.
x=\frac{-20±\sqrt{400-76\times 20}}{2\times 19}
Multiply -4 times 19.
x=\frac{-20±\sqrt{400-1520}}{2\times 19}
Multiply -76 times 20.
x=\frac{-20±\sqrt{-1120}}{2\times 19}
Add 400 to -1520.
x=\frac{-20±4\sqrt{70}i}{2\times 19}
Take the square root of -1120.
x=\frac{-20±4\sqrt{70}i}{38}
Multiply 2 times 19.
x=\frac{-20+4\sqrt{70}i}{38}
Now solve the equation x=\frac{-20±4\sqrt{70}i}{38} when ± is plus. Add -20 to 4i\sqrt{70}.
x=\frac{-10+2\sqrt{70}i}{19}
Divide -20+4i\sqrt{70} by 38.
x=\frac{-4\sqrt{70}i-20}{38}
Now solve the equation x=\frac{-20±4\sqrt{70}i}{38} when ± is minus. Subtract 4i\sqrt{70} from -20.
x=\frac{-2\sqrt{70}i-10}{19}
Divide -20-4i\sqrt{70} by 38.
x=\frac{-10+2\sqrt{70}i}{19} x=\frac{-2\sqrt{70}i-10}{19}
The equation is now solved.
5\left(x+2\right)^{2}+7x\times 2x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 35x, the least common multiple of 7x,5.
5\left(x^{2}+4x+4\right)+7x\times 2x=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
5x^{2}+20x+20+7x\times 2x=0
Use the distributive property to multiply 5 by x^{2}+4x+4.
5x^{2}+20x+20+7x^{2}\times 2=0
Multiply x and x to get x^{2}.
5x^{2}+20x+20+14x^{2}=0
Multiply 7 and 2 to get 14.
19x^{2}+20x+20=0
Combine 5x^{2} and 14x^{2} to get 19x^{2}.
19x^{2}+20x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
\frac{19x^{2}+20x}{19}=-\frac{20}{19}
Divide both sides by 19.
x^{2}+\frac{20}{19}x=-\frac{20}{19}
Dividing by 19 undoes the multiplication by 19.
x^{2}+\frac{20}{19}x+\left(\frac{10}{19}\right)^{2}=-\frac{20}{19}+\left(\frac{10}{19}\right)^{2}
Divide \frac{20}{19}, the coefficient of the x term, by 2 to get \frac{10}{19}. Then add the square of \frac{10}{19} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{19}x+\frac{100}{361}=-\frac{20}{19}+\frac{100}{361}
Square \frac{10}{19} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{19}x+\frac{100}{361}=-\frac{280}{361}
Add -\frac{20}{19} to \frac{100}{361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10}{19}\right)^{2}=-\frac{280}{361}
Factor x^{2}+\frac{20}{19}x+\frac{100}{361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{19}\right)^{2}}=\sqrt{-\frac{280}{361}}
Take the square root of both sides of the equation.
x+\frac{10}{19}=\frac{2\sqrt{70}i}{19} x+\frac{10}{19}=-\frac{2\sqrt{70}i}{19}
Simplify.
x=\frac{-10+2\sqrt{70}i}{19} x=\frac{-2\sqrt{70}i-10}{19}
Subtract \frac{10}{19} from both sides of the equation.