Solve for x
x = -\frac{41}{6} = -6\frac{5}{6} \approx -6.833333333
Graph
Share
Copied to clipboard
\left(x+2\right)^{2}+1=2x+4\left(\frac{x}{2}+\frac{1}{3}\right)^{2}
Multiply both sides of the equation by 4, the least common multiple of 4,2.
x^{2}+4x+4+1=2x+4\left(\frac{x}{2}+\frac{1}{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+5=2x+4\left(\frac{x}{2}+\frac{1}{3}\right)^{2}
Add 4 and 1 to get 5.
x^{2}+4x+5=2x+4\left(\frac{3x}{6}+\frac{2}{6}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{x}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
x^{2}+4x+5=2x+4\times \left(\frac{3x+2}{6}\right)^{2}
Since \frac{3x}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
x^{2}+4x+5=2x+4\times \frac{\left(3x+2\right)^{2}}{6^{2}}
To raise \frac{3x+2}{6} to a power, raise both numerator and denominator to the power and then divide.
x^{2}+4x+5=2x+\frac{4\left(3x+2\right)^{2}}{6^{2}}
Express 4\times \frac{\left(3x+2\right)^{2}}{6^{2}} as a single fraction.
x^{2}+4x+5=\frac{2x\times 6^{2}}{6^{2}}+\frac{4\left(3x+2\right)^{2}}{6^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{6^{2}}{6^{2}}.
x^{2}+4x+5=\frac{2x\times 6^{2}+4\left(3x+2\right)^{2}}{6^{2}}
Since \frac{2x\times 6^{2}}{6^{2}} and \frac{4\left(3x+2\right)^{2}}{6^{2}} have the same denominator, add them by adding their numerators.
x^{2}+4x+5=\frac{72x+36x^{2}+48x+16}{6^{2}}
Do the multiplications in 2x\times 6^{2}+4\left(3x+2\right)^{2}.
x^{2}+4x+5=\frac{120x+36x^{2}+16}{6^{2}}
Combine like terms in 72x+36x^{2}+48x+16.
x^{2}+4x+5=\frac{120x+36x^{2}+16}{36}
Calculate 6 to the power of 2 and get 36.
x^{2}+4x+5=\frac{10}{3}x+x^{2}+\frac{4}{9}
Divide each term of 120x+36x^{2}+16 by 36 to get \frac{10}{3}x+x^{2}+\frac{4}{9}.
x^{2}+4x+5-\frac{10}{3}x=x^{2}+\frac{4}{9}
Subtract \frac{10}{3}x from both sides.
x^{2}+\frac{2}{3}x+5=x^{2}+\frac{4}{9}
Combine 4x and -\frac{10}{3}x to get \frac{2}{3}x.
x^{2}+\frac{2}{3}x+5-x^{2}=\frac{4}{9}
Subtract x^{2} from both sides.
\frac{2}{3}x+5=\frac{4}{9}
Combine x^{2} and -x^{2} to get 0.
\frac{2}{3}x=\frac{4}{9}-5
Subtract 5 from both sides.
\frac{2}{3}x=-\frac{41}{9}
Subtract 5 from \frac{4}{9} to get -\frac{41}{9}.
x=-\frac{41}{9}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
x=-\frac{41}{6}
Multiply -\frac{41}{9} and \frac{3}{2} to get -\frac{41}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}