Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(w+2\right)\left(w+7\right)}{2^{2}w^{2}-1^{2}}\times \frac{1-2w}{w+7}
Expand \left(2w\right)^{2}.
\frac{\left(w+2\right)\left(w+7\right)}{4w^{2}-1^{2}}\times \frac{1-2w}{w+7}
Calculate 2 to the power of 2 and get 4.
\frac{\left(w+2\right)\left(w+7\right)}{4w^{2}-1}\times \frac{1-2w}{w+7}
Calculate 1 to the power of 2 and get 1.
\frac{\left(w+2\right)\left(w+7\right)\left(1-2w\right)}{\left(4w^{2}-1\right)\left(w+7\right)}
Multiply \frac{\left(w+2\right)\left(w+7\right)}{4w^{2}-1} times \frac{1-2w}{w+7} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(w+2\right)\left(-2w+1\right)}{4w^{2}-1}
Cancel out w+7 in both numerator and denominator.
\frac{\left(w+2\right)\left(-2w+1\right)}{\left(2w-1\right)\left(2w+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(2w-1\right)\left(w+2\right)}{\left(2w-1\right)\left(2w+1\right)}
Extract the negative sign in 1-2w.
\frac{-\left(w+2\right)}{2w+1}
Cancel out 2w-1 in both numerator and denominator.
\frac{-w-2}{2w+1}
Expand the expression.
\frac{\left(w+2\right)\left(w+7\right)}{2^{2}w^{2}-1^{2}}\times \frac{1-2w}{w+7}
Expand \left(2w\right)^{2}.
\frac{\left(w+2\right)\left(w+7\right)}{4w^{2}-1^{2}}\times \frac{1-2w}{w+7}
Calculate 2 to the power of 2 and get 4.
\frac{\left(w+2\right)\left(w+7\right)}{4w^{2}-1}\times \frac{1-2w}{w+7}
Calculate 1 to the power of 2 and get 1.
\frac{\left(w+2\right)\left(w+7\right)\left(1-2w\right)}{\left(4w^{2}-1\right)\left(w+7\right)}
Multiply \frac{\left(w+2\right)\left(w+7\right)}{4w^{2}-1} times \frac{1-2w}{w+7} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(w+2\right)\left(-2w+1\right)}{4w^{2}-1}
Cancel out w+7 in both numerator and denominator.
\frac{\left(w+2\right)\left(-2w+1\right)}{\left(2w-1\right)\left(2w+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(2w-1\right)\left(w+2\right)}{\left(2w-1\right)\left(2w+1\right)}
Extract the negative sign in 1-2w.
\frac{-\left(w+2\right)}{2w+1}
Cancel out 2w-1 in both numerator and denominator.
\frac{-w-2}{2w+1}
Expand the expression.