Evaluate
\frac{10k^{4}+56k^{3}+113k^{2}+85k+24}{24\left(2k+1\right)}
Expand
\frac{10k^{4}+56k^{3}+113k^{2}+85k+24}{24\left(2k+1\right)}
Share
Copied to clipboard
\frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{8k+4}+\frac{k}{24}\left(2k^{2}+9k+13\right)
Use the distributive property to multiply 4 by 2k+1.
\frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{8k+4}+\frac{k\left(2k^{2}+9k+13\right)}{24}
Express \frac{k}{24}\left(2k^{2}+9k+13\right) as a single fraction.
\frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{4\left(2k+1\right)}+\frac{k\left(2k^{2}+9k+13\right)}{24}
Factor 8k+4.
\frac{6\left(k+1\right)^{2}\left(k+2\right)^{2}}{24\left(2k+1\right)}+\frac{k\left(2k^{2}+9k+13\right)\left(2k+1\right)}{24\left(2k+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2k+1\right) and 24 is 24\left(2k+1\right). Multiply \frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{4\left(2k+1\right)} times \frac{6}{6}. Multiply \frac{k\left(2k^{2}+9k+13\right)}{24} times \frac{2k+1}{2k+1}.
\frac{6\left(k+1\right)^{2}\left(k+2\right)^{2}+k\left(2k^{2}+9k+13\right)\left(2k+1\right)}{24\left(2k+1\right)}
Since \frac{6\left(k+1\right)^{2}\left(k+2\right)^{2}}{24\left(2k+1\right)} and \frac{k\left(2k^{2}+9k+13\right)\left(2k+1\right)}{24\left(2k+1\right)} have the same denominator, add them by adding their numerators.
\frac{6k^{4}+24k^{3}+24k^{2}+12k^{3}+48k^{2}+48k+6k^{2}+24k+24+4k^{4}+2k^{3}+18k^{3}+9k^{2}+26k^{2}+13k}{24\left(2k+1\right)}
Do the multiplications in 6\left(k+1\right)^{2}\left(k+2\right)^{2}+k\left(2k^{2}+9k+13\right)\left(2k+1\right).
\frac{10k^{4}+56k^{3}+113k^{2}+85k+24}{24\left(2k+1\right)}
Combine like terms in 6k^{4}+24k^{3}+24k^{2}+12k^{3}+48k^{2}+48k+6k^{2}+24k+24+4k^{4}+2k^{3}+18k^{3}+9k^{2}+26k^{2}+13k.
\frac{10k^{4}+56k^{3}+113k^{2}+85k+24}{48k+24}
Expand 24\left(2k+1\right).
\frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{8k+4}+\frac{k}{24}\left(2k^{2}+9k+13\right)
Use the distributive property to multiply 4 by 2k+1.
\frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{8k+4}+\frac{k\left(2k^{2}+9k+13\right)}{24}
Express \frac{k}{24}\left(2k^{2}+9k+13\right) as a single fraction.
\frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{4\left(2k+1\right)}+\frac{k\left(2k^{2}+9k+13\right)}{24}
Factor 8k+4.
\frac{6\left(k+1\right)^{2}\left(k+2\right)^{2}}{24\left(2k+1\right)}+\frac{k\left(2k^{2}+9k+13\right)\left(2k+1\right)}{24\left(2k+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2k+1\right) and 24 is 24\left(2k+1\right). Multiply \frac{\left(k+1\right)^{2}\left(k+2\right)^{2}}{4\left(2k+1\right)} times \frac{6}{6}. Multiply \frac{k\left(2k^{2}+9k+13\right)}{24} times \frac{2k+1}{2k+1}.
\frac{6\left(k+1\right)^{2}\left(k+2\right)^{2}+k\left(2k^{2}+9k+13\right)\left(2k+1\right)}{24\left(2k+1\right)}
Since \frac{6\left(k+1\right)^{2}\left(k+2\right)^{2}}{24\left(2k+1\right)} and \frac{k\left(2k^{2}+9k+13\right)\left(2k+1\right)}{24\left(2k+1\right)} have the same denominator, add them by adding their numerators.
\frac{6k^{4}+24k^{3}+24k^{2}+12k^{3}+48k^{2}+48k+6k^{2}+24k+24+4k^{4}+2k^{3}+18k^{3}+9k^{2}+26k^{2}+13k}{24\left(2k+1\right)}
Do the multiplications in 6\left(k+1\right)^{2}\left(k+2\right)^{2}+k\left(2k^{2}+9k+13\right)\left(2k+1\right).
\frac{10k^{4}+56k^{3}+113k^{2}+85k+24}{24\left(2k+1\right)}
Combine like terms in 6k^{4}+24k^{3}+24k^{2}+12k^{3}+48k^{2}+48k+6k^{2}+24k+24+4k^{4}+2k^{3}+18k^{3}+9k^{2}+26k^{2}+13k.
\frac{10k^{4}+56k^{3}+113k^{2}+85k+24}{48k+24}
Expand 24\left(2k+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}