Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1+3i+1\right)\left(i^{2}+i+1\right)}{1^{2}-i+2}
Calculate i to the power of 2 and get -1.
\frac{3i\left(i^{2}+i+1\right)}{1^{2}-i+2}
Do the additions in -1+3i+1.
\frac{3i\left(-1+i+1\right)}{1^{2}-i+2}
Calculate i to the power of 2 and get -1.
\frac{3ii}{1^{2}-i+2}
Do the additions in -1+i+1.
\frac{-3}{1^{2}-i+2}
Multiply 3i and i to get -3.
\frac{-3}{1-i+2}
Calculate 1 to the power of 2 and get 1.
\frac{-3}{3-i}
Do the additions in 1-i+2.
\frac{-3\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{-9-3i}{10}
Do the multiplications in \frac{-3\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
-\frac{9}{10}-\frac{3}{10}i
Divide -9-3i by 10 to get -\frac{9}{10}-\frac{3}{10}i.
Re(\frac{\left(-1+3i+1\right)\left(i^{2}+i+1\right)}{1^{2}-i+2})
Calculate i to the power of 2 and get -1.
Re(\frac{3i\left(i^{2}+i+1\right)}{1^{2}-i+2})
Do the additions in -1+3i+1.
Re(\frac{3i\left(-1+i+1\right)}{1^{2}-i+2})
Calculate i to the power of 2 and get -1.
Re(\frac{3ii}{1^{2}-i+2})
Do the additions in -1+i+1.
Re(\frac{-3}{1^{2}-i+2})
Multiply 3i and i to get -3.
Re(\frac{-3}{1-i+2})
Calculate 1 to the power of 2 and get 1.
Re(\frac{-3}{3-i})
Do the additions in 1-i+2.
Re(\frac{-3\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{-3}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{-9-3i}{10})
Do the multiplications in \frac{-3\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(-\frac{9}{10}-\frac{3}{10}i)
Divide -9-3i by 10 to get -\frac{9}{10}-\frac{3}{10}i.
-\frac{9}{10}
The real part of -\frac{9}{10}-\frac{3}{10}i is -\frac{9}{10}.