Solve for a
a\neq 0
Share
Copied to clipboard
\left(a^{2}\right)^{6}\left(a^{3}\right)^{8}=a^{6}\left(a^{6}\right)^{5}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a^{6}.
a^{12}\left(a^{3}\right)^{8}=a^{6}\left(a^{6}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 6 to get 12.
a^{12}a^{24}=a^{6}\left(a^{6}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 3 and 8 to get 24.
a^{36}=a^{6}\left(a^{6}\right)^{5}
To multiply powers of the same base, add their exponents. Add 12 and 24 to get 36.
a^{36}=a^{6}a^{30}
To raise a power to another power, multiply the exponents. Multiply 6 and 5 to get 30.
a^{36}=a^{36}
To multiply powers of the same base, add their exponents. Add 6 and 30 to get 36.
a^{36}-a^{36}=0
Subtract a^{36} from both sides.
0=0
Combine a^{36} and -a^{36} to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{R}
This is true for any a.
a\in \mathrm{R}\setminus 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}