Skip to main content
Solve for a
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+2i}{\left(1+i\right)\left(1-i\right)^{0}}=z
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{a+2i}{\left(1+i\right)\times 1}=z
Calculate 1-i to the power of 0 and get 1.
\frac{a+2i}{1+i}=z
Multiply 1+i and 1 to get 1+i.
\frac{a}{1+i}+\frac{2i}{1+i}=z
Divide each term of a+2i by 1+i to get \frac{a}{1+i}+\frac{2i}{1+i}.
\frac{a}{1+i}+\frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}=z
Multiply both numerator and denominator of \frac{2i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{a}{1+i}+\frac{2+2i}{2}=z
Do the multiplications in \frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\frac{a}{1+i}+\left(1+i\right)=z
Divide 2+2i by 2 to get 1+i.
\frac{a}{1+i}=z-\left(1+i\right)
Subtract 1+i from both sides.
\frac{a}{1+i}=z+\left(-1-i\right)
Multiply -1 and 1+i to get -1-i.
\left(\frac{1}{2}-\frac{1}{2}i\right)a=z+\left(-1-i\right)
The equation is in standard form.
\frac{\left(\frac{1}{2}-\frac{1}{2}i\right)a}{\frac{1}{2}-\frac{1}{2}i}=\frac{z+\left(-1-i\right)}{\frac{1}{2}-\frac{1}{2}i}
Divide both sides by \frac{1}{2}-\frac{1}{2}i.
a=\frac{z+\left(-1-i\right)}{\frac{1}{2}-\frac{1}{2}i}
Dividing by \frac{1}{2}-\frac{1}{2}i undoes the multiplication by \frac{1}{2}-\frac{1}{2}i.
a=\left(1+i\right)z-2i
Divide z+\left(-1-i\right) by \frac{1}{2}-\frac{1}{2}i.