Evaluate
\frac{b^{2}}{12a^{4}}
Differentiate w.r.t. b
\frac{b}{6a^{4}}
Quiz
Algebra
\frac { ( 9 a ^ { 4 } b ^ { 8 } ) ^ { \frac { 1 } { 2 } } } { ( 6 a ^ { 3 } b ) ^ { 2 } } =
Share
Copied to clipboard
\frac{9^{\frac{1}{2}}\left(a^{4}\right)^{\frac{1}{2}}\left(b^{8}\right)^{\frac{1}{2}}}{\left(6a^{3}b\right)^{2}}
Expand \left(9a^{4}b^{8}\right)^{\frac{1}{2}}.
\frac{9^{\frac{1}{2}}a^{2}\left(b^{8}\right)^{\frac{1}{2}}}{\left(6a^{3}b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and \frac{1}{2} to get 2.
\frac{9^{\frac{1}{2}}a^{2}b^{4}}{\left(6a^{3}b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 8 and \frac{1}{2} to get 4.
\frac{3a^{2}b^{4}}{\left(6a^{3}b\right)^{2}}
Calculate 9 to the power of \frac{1}{2} and get 3.
\frac{3a^{2}b^{4}}{6^{2}\left(a^{3}\right)^{2}b^{2}}
Expand \left(6a^{3}b\right)^{2}.
\frac{3a^{2}b^{4}}{6^{2}a^{6}b^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{3a^{2}b^{4}}{36a^{6}b^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{b^{2}}{12a^{4}}
Cancel out 3a^{2}b^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}