Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{36+1}{4}-\frac{2\times 8+1}{8}\right)\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply 9 and 4 to get 36.
\frac{\left(\frac{37}{4}-\frac{2\times 8+1}{8}\right)\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Add 36 and 1 to get 37.
\frac{\left(\frac{37}{4}-\frac{16+1}{8}\right)\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply 2 and 8 to get 16.
\frac{\left(\frac{37}{4}-\frac{17}{8}\right)\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Add 16 and 1 to get 17.
\frac{\left(\frac{74}{8}-\frac{17}{8}\right)\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Least common multiple of 4 and 8 is 8. Convert \frac{37}{4} and \frac{17}{8} to fractions with denominator 8.
\frac{\frac{74-17}{8}\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Since \frac{74}{8} and \frac{17}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{57}{8}\times \frac{2}{3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Subtract 17 from 74 to get 57.
\frac{\frac{57\times 2}{8\times 3}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply \frac{57}{8} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{114}{24}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Do the multiplications in the fraction \frac{57\times 2}{8\times 3}.
\frac{\frac{19}{4}}{\frac{\frac{5\times 8+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Reduce the fraction \frac{114}{24} to lowest terms by extracting and canceling out 6.
\frac{\frac{19}{4}}{\frac{\frac{40+3}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply 5 and 8 to get 40.
\frac{\frac{19}{4}}{\frac{\frac{43}{8}-\frac{2}{3}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Add 40 and 3 to get 43.
\frac{\frac{19}{4}}{\frac{\frac{129}{24}-\frac{16}{24}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Least common multiple of 8 and 3 is 24. Convert \frac{43}{8} and \frac{2}{3} to fractions with denominator 24.
\frac{\frac{19}{4}}{\frac{\frac{129-16}{24}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Since \frac{129}{24} and \frac{16}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{19}{4}}{\frac{\frac{113}{24}}{11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Subtract 16 from 129 to get 113.
\frac{\frac{19}{4}}{\frac{113}{24\times 11,3}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Express \frac{\frac{113}{24}}{11,3} as a single fraction.
\frac{\frac{19}{4}}{\frac{113}{271,2}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply 24 and 11,3 to get 271,2.
\frac{\frac{19}{4}}{\frac{1130}{2712}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Expand \frac{113}{271,2} by multiplying both numerator and the denominator by 10.
\frac{\frac{19}{4}}{\frac{5}{12}}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Reduce the fraction \frac{1130}{2712} to lowest terms by extracting and canceling out 226.
\frac{19}{4}\times \frac{12}{5}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Divide \frac{19}{4} by \frac{5}{12} by multiplying \frac{19}{4} by the reciprocal of \frac{5}{12}.
\frac{19\times 12}{4\times 5}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply \frac{19}{4} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{228}{20}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Do the multiplications in the fraction \frac{19\times 12}{4\times 5}.
\frac{57}{5}+\frac{\frac{\frac{3}{5}\times 1,35}{0,9}}{0,72-\frac{3}{25}}+0,1
Reduce the fraction \frac{228}{20} to lowest terms by extracting and canceling out 4.
\frac{57}{5}+\frac{\frac{\frac{3}{5}\times \frac{27}{20}}{0,9}}{0,72-\frac{3}{25}}+0,1
Convert decimal number 1,35 to fraction \frac{135}{100}. Reduce the fraction \frac{135}{100} to lowest terms by extracting and canceling out 5.
\frac{57}{5}+\frac{\frac{\frac{3\times 27}{5\times 20}}{0,9}}{0,72-\frac{3}{25}}+0,1
Multiply \frac{3}{5} times \frac{27}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{57}{5}+\frac{\frac{\frac{81}{100}}{0,9}}{0,72-\frac{3}{25}}+0,1
Do the multiplications in the fraction \frac{3\times 27}{5\times 20}.
\frac{57}{5}+\frac{\frac{81}{100\times 0,9}}{0,72-\frac{3}{25}}+0,1
Express \frac{\frac{81}{100}}{0,9} as a single fraction.
\frac{57}{5}+\frac{\frac{81}{90}}{0,72-\frac{3}{25}}+0,1
Multiply 100 and 0,9 to get 90.
\frac{57}{5}+\frac{\frac{9}{10}}{0,72-\frac{3}{25}}+0,1
Reduce the fraction \frac{81}{90} to lowest terms by extracting and canceling out 9.
\frac{57}{5}+\frac{\frac{9}{10}}{\frac{18}{25}-\frac{3}{25}}+0,1
Convert decimal number 0,72 to fraction \frac{72}{100}. Reduce the fraction \frac{72}{100} to lowest terms by extracting and canceling out 4.
\frac{57}{5}+\frac{\frac{9}{10}}{\frac{18-3}{25}}+0,1
Since \frac{18}{25} and \frac{3}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{57}{5}+\frac{\frac{9}{10}}{\frac{15}{25}}+0,1
Subtract 3 from 18 to get 15.
\frac{57}{5}+\frac{\frac{9}{10}}{\frac{3}{5}}+0,1
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
\frac{57}{5}+\frac{9}{10}\times \frac{5}{3}+0,1
Divide \frac{9}{10} by \frac{3}{5} by multiplying \frac{9}{10} by the reciprocal of \frac{3}{5}.
\frac{57}{5}+\frac{9\times 5}{10\times 3}+0,1
Multiply \frac{9}{10} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{57}{5}+\frac{45}{30}+0,1
Do the multiplications in the fraction \frac{9\times 5}{10\times 3}.
\frac{57}{5}+\frac{3}{2}+0,1
Reduce the fraction \frac{45}{30} to lowest terms by extracting and canceling out 15.
\frac{114}{10}+\frac{15}{10}+0,1
Least common multiple of 5 and 2 is 10. Convert \frac{57}{5} and \frac{3}{2} to fractions with denominator 10.
\frac{114+15}{10}+0,1
Since \frac{114}{10} and \frac{15}{10} have the same denominator, add them by adding their numerators.
\frac{129}{10}+0,1
Add 114 and 15 to get 129.
\frac{129}{10}+\frac{1}{10}
Convert decimal number 0,1 to fraction \frac{1}{10}.
\frac{129+1}{10}
Since \frac{129}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{130}{10}
Add 129 and 1 to get 130.
13
Divide 130 by 10 to get 13.