Evaluate
-\frac{14}{d^{4}}
Differentiate w.r.t. d
\frac{56}{d^{5}}
Share
Copied to clipboard
\frac{7d^{-8}\left(-4\right)}{2d^{-4}}
To multiply powers of the same base, add their exponents. Add -6 and -2 to get -8.
\frac{-2\times 7d^{-8}}{d^{-4}}
Cancel out 2 in both numerator and denominator.
\frac{-2\times 7}{d^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-14}{d^{4}}
Multiply -2 and 7 to get -14.
\frac{\mathrm{d}}{\mathrm{d}d}(\left(-\frac{\frac{28}{d^{2}}}{2}\right)d^{-6-\left(-4\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}d}(\left(-\frac{14}{d^{2}}\right)d^{-2})
Do the arithmetic.
-2\left(-\frac{14}{d^{2}}\right)d^{-2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{28}{d^{2}}d^{-3}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}