Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{64^{-\frac{1}{6}}\times 216^{\frac{-1}{3}}\times 81^{\frac{1}{4}}}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
\frac{\frac{1}{2}\times 216^{\frac{-1}{3}}\times 81^{\frac{1}{4}}}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Calculate 64 to the power of -\frac{1}{6} and get \frac{1}{2}.
\frac{\frac{1}{2}\times 216^{-\frac{1}{3}}\times 81^{\frac{1}{4}}}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{\frac{1}{2}\times \frac{1}{6}\times 81^{\frac{1}{4}}}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Calculate 216 to the power of -\frac{1}{3} and get \frac{1}{6}.
\frac{\frac{1}{12}\times 81^{\frac{1}{4}}}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Multiply \frac{1}{2} and \frac{1}{6} to get \frac{1}{12}.
\frac{\frac{1}{12}\times 3}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Calculate 81 to the power of \frac{1}{4} and get 3.
\frac{\frac{1}{4}}{512^{\frac{-1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Multiply \frac{1}{12} and 3 to get \frac{1}{4}.
\frac{\frac{1}{4}}{512^{-\frac{1}{3}}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{\frac{1}{4}}{\frac{1}{8}\times 16^{\frac{1}{4}}\times 9^{\frac{-1}{2}}}
Calculate 512 to the power of -\frac{1}{3} and get \frac{1}{8}.
\frac{\frac{1}{4}}{\frac{1}{8}\times 2\times 9^{\frac{-1}{2}}}
Calculate 16 to the power of \frac{1}{4} and get 2.
\frac{\frac{1}{4}}{\frac{1}{4}\times 9^{\frac{-1}{2}}}
Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
\frac{\frac{1}{4}}{\frac{1}{4}\times 9^{-\frac{1}{2}}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{3}}
Calculate 9 to the power of -\frac{1}{2} and get \frac{1}{3}.
\frac{\frac{1}{4}}{\frac{1}{12}}
Multiply \frac{1}{4} and \frac{1}{3} to get \frac{1}{12}.
\frac{1}{4}\times 12
Divide \frac{1}{4} by \frac{1}{12} by multiplying \frac{1}{4} by the reciprocal of \frac{1}{12}.
3
Multiply \frac{1}{4} and 12 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}