\frac { ( 6,25 - 3,75 ) \cdot 0,8 } { ( 4 - 2,75 ) : 6,25 } + \frac { ( 2,5 + 0,75 ) : 3,25 } { ( 40 - 38,8 ) \cdot 5 }
Evaluate
\frac{61}{6}\approx 10,166666667
Factor
\frac{61}{2 \cdot 3} = 10\frac{1}{6} = 10.166666666666666
Share
Copied to clipboard
\frac{2,5\times 0,8}{\frac{4-2,75}{6,25}}+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Subtract 3,75 from 6,25 to get 2,5.
\frac{2}{\frac{4-2,75}{6,25}}+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Multiply 2,5 and 0,8 to get 2.
\frac{2}{\frac{1,25}{6,25}}+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Subtract 2,75 from 4 to get 1,25.
\frac{2}{\frac{125}{625}}+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Expand \frac{1,25}{6,25} by multiplying both numerator and the denominator by 100.
\frac{2}{\frac{1}{5}}+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Reduce the fraction \frac{125}{625} to lowest terms by extracting and canceling out 125.
2\times 5+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Divide 2 by \frac{1}{5} by multiplying 2 by the reciprocal of \frac{1}{5}.
10+\frac{\frac{2,5+0,75}{3,25}}{\left(40-38,8\right)\times 5}
Multiply 2 and 5 to get 10.
10+\frac{\frac{3,25}{3,25}}{\left(40-38,8\right)\times 5}
Add 2,5 and 0,75 to get 3,25.
10+\frac{1}{\left(40-38,8\right)\times 5}
Divide 3,25 by 3,25 to get 1.
10+\frac{1}{1,2\times 5}
Subtract 38,8 from 40 to get 1,2.
10+\frac{1}{6}
Multiply 1,2 and 5 to get 6.
\frac{60}{6}+\frac{1}{6}
Convert 10 to fraction \frac{60}{6}.
\frac{60+1}{6}
Since \frac{60}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{61}{6}
Add 60 and 1 to get 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}