Evaluate
\frac{3y^{23}}{4}
Expand
\frac{3y^{23}}{4}
Share
Copied to clipboard
\frac{6^{-2}\left(x^{3}\right)^{-2}\left(y^{-4}\right)^{-2}}{\left(3x^{2}y^{5}\right)^{-3}}
Expand \left(6x^{3}y^{-4}\right)^{-2}.
\frac{6^{-2}x^{-6}\left(y^{-4}\right)^{-2}}{\left(3x^{2}y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{6^{-2}x^{-6}y^{8}}{\left(3x^{2}y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
\frac{\frac{1}{36}x^{-6}y^{8}}{\left(3x^{2}y^{5}\right)^{-3}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{1}{36}x^{-6}y^{8}}{3^{-3}\left(x^{2}\right)^{-3}\left(y^{5}\right)^{-3}}
Expand \left(3x^{2}y^{5}\right)^{-3}.
\frac{\frac{1}{36}x^{-6}y^{8}}{3^{-3}x^{-6}\left(y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{\frac{1}{36}x^{-6}y^{8}}{3^{-3}x^{-6}y^{-15}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
\frac{\frac{1}{36}x^{-6}y^{8}}{\frac{1}{27}x^{-6}y^{-15}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{\frac{1}{36}y^{8}}{\frac{1}{27}y^{-15}}
Cancel out x^{-6} in both numerator and denominator.
\frac{\frac{1}{36}y^{23}}{\frac{1}{27}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{36}y^{23}\times 27
Divide \frac{1}{36}y^{23} by \frac{1}{27} by multiplying \frac{1}{36}y^{23} by the reciprocal of \frac{1}{27}.
\frac{3}{4}y^{23}
Multiply \frac{1}{36} and 27 to get \frac{3}{4}.
\frac{6^{-2}\left(x^{3}\right)^{-2}\left(y^{-4}\right)^{-2}}{\left(3x^{2}y^{5}\right)^{-3}}
Expand \left(6x^{3}y^{-4}\right)^{-2}.
\frac{6^{-2}x^{-6}\left(y^{-4}\right)^{-2}}{\left(3x^{2}y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{6^{-2}x^{-6}y^{8}}{\left(3x^{2}y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
\frac{\frac{1}{36}x^{-6}y^{8}}{\left(3x^{2}y^{5}\right)^{-3}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{1}{36}x^{-6}y^{8}}{3^{-3}\left(x^{2}\right)^{-3}\left(y^{5}\right)^{-3}}
Expand \left(3x^{2}y^{5}\right)^{-3}.
\frac{\frac{1}{36}x^{-6}y^{8}}{3^{-3}x^{-6}\left(y^{5}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{\frac{1}{36}x^{-6}y^{8}}{3^{-3}x^{-6}y^{-15}}
To raise a power to another power, multiply the exponents. Multiply 5 and -3 to get -15.
\frac{\frac{1}{36}x^{-6}y^{8}}{\frac{1}{27}x^{-6}y^{-15}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{\frac{1}{36}y^{8}}{\frac{1}{27}y^{-15}}
Cancel out x^{-6} in both numerator and denominator.
\frac{\frac{1}{36}y^{23}}{\frac{1}{27}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{36}y^{23}\times 27
Divide \frac{1}{36}y^{23} by \frac{1}{27} by multiplying \frac{1}{36}y^{23} by the reciprocal of \frac{1}{27}.
\frac{3}{4}y^{23}
Multiply \frac{1}{36} and 27 to get \frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}