Evaluate
-\frac{8}{5}-\frac{1}{5}i=-1.6-0.2i
Real Part
-\frac{8}{5} = -1\frac{3}{5} = -1.6
Share
Copied to clipboard
\frac{6-1+\left(2-3\right)i}{-1+i-2}
Subtract 1+3i from 6+2i by subtracting corresponding real and imaginary parts.
\frac{5-i}{-1+i-2}
Subtract 1 from 6. Subtract 3 from 2.
\frac{5-i}{-1-2+i}
Subtract 2 from -1+i by subtracting corresponding real and imaginary parts.
\frac{5-i}{-3+i}
Subtract 2 from -1 to get -3.
\frac{\left(5-i\right)\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3-i.
\frac{\left(5-i\right)\left(-3-i\right)}{\left(-3\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-i\right)\left(-3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\left(-3\right)+5\left(-i\right)-i\left(-3\right)-\left(-i^{2}\right)}{10}
Multiply complex numbers 5-i and -3-i like you multiply binomials.
\frac{5\left(-3\right)+5\left(-i\right)-i\left(-3\right)-\left(-\left(-1\right)\right)}{10}
By definition, i^{2} is -1.
\frac{-15-5i+3i-1}{10}
Do the multiplications in 5\left(-3\right)+5\left(-i\right)-i\left(-3\right)-\left(-\left(-1\right)\right).
\frac{-15-1+\left(-5+3\right)i}{10}
Combine the real and imaginary parts in -15-5i+3i-1.
\frac{-16-2i}{10}
Do the additions in -15-1+\left(-5+3\right)i.
-\frac{8}{5}-\frac{1}{5}i
Divide -16-2i by 10 to get -\frac{8}{5}-\frac{1}{5}i.
Re(\frac{6-1+\left(2-3\right)i}{-1+i-2})
Subtract 1+3i from 6+2i by subtracting corresponding real and imaginary parts.
Re(\frac{5-i}{-1+i-2})
Subtract 1 from 6. Subtract 3 from 2.
Re(\frac{5-i}{-1-2+i})
Subtract 2 from -1+i by subtracting corresponding real and imaginary parts.
Re(\frac{5-i}{-3+i})
Subtract 2 from -1 to get -3.
Re(\frac{\left(5-i\right)\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)})
Multiply both numerator and denominator of \frac{5-i}{-3+i} by the complex conjugate of the denominator, -3-i.
Re(\frac{\left(5-i\right)\left(-3-i\right)}{\left(-3\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-i\right)\left(-3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\left(-3\right)+5\left(-i\right)-i\left(-3\right)-\left(-i^{2}\right)}{10})
Multiply complex numbers 5-i and -3-i like you multiply binomials.
Re(\frac{5\left(-3\right)+5\left(-i\right)-i\left(-3\right)-\left(-\left(-1\right)\right)}{10})
By definition, i^{2} is -1.
Re(\frac{-15-5i+3i-1}{10})
Do the multiplications in 5\left(-3\right)+5\left(-i\right)-i\left(-3\right)-\left(-\left(-1\right)\right).
Re(\frac{-15-1+\left(-5+3\right)i}{10})
Combine the real and imaginary parts in -15-5i+3i-1.
Re(\frac{-16-2i}{10})
Do the additions in -15-1+\left(-5+3\right)i.
Re(-\frac{8}{5}-\frac{1}{5}i)
Divide -16-2i by 10 to get -\frac{8}{5}-\frac{1}{5}i.
-\frac{8}{5}
The real part of -\frac{8}{5}-\frac{1}{5}i is -\frac{8}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}