Evaluate
\frac{78}{155}\approx 0.503225806
Factor
\frac{2 \cdot 3 \cdot 13}{5 \cdot 31} = 0.5032258064516129
Share
Copied to clipboard
\frac{\left(\frac{280+7}{56}-\frac{4\times 8+1}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Multiply 5 and 56 to get 280.
\frac{\left(\frac{287}{56}-\frac{4\times 8+1}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Add 280 and 7 to get 287.
\frac{\left(\frac{41}{8}-\frac{4\times 8+1}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Reduce the fraction \frac{287}{56} to lowest terms by extracting and canceling out 7.
\frac{\left(\frac{41}{8}-\frac{32+1}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Multiply 4 and 8 to get 32.
\frac{\left(\frac{41}{8}-\frac{33}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Add 32 and 1 to get 33.
\frac{\left(\frac{41-33}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Since \frac{41}{8} and \frac{33}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{8}{8}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Subtract 33 from 41 to get 8.
\frac{\left(1+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Divide 8 by 8 to get 1.
\frac{\left(\frac{12}{12}+\frac{1}{12}\right)\times 36}{78-\frac{1}{2}}
Convert 1 to fraction \frac{12}{12}.
\frac{\frac{12+1}{12}\times 36}{78-\frac{1}{2}}
Since \frac{12}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{13}{12}\times 36}{78-\frac{1}{2}}
Add 12 and 1 to get 13.
\frac{\frac{13\times 36}{12}}{78-\frac{1}{2}}
Express \frac{13}{12}\times 36 as a single fraction.
\frac{\frac{468}{12}}{78-\frac{1}{2}}
Multiply 13 and 36 to get 468.
\frac{39}{78-\frac{1}{2}}
Divide 468 by 12 to get 39.
\frac{39}{\frac{156}{2}-\frac{1}{2}}
Convert 78 to fraction \frac{156}{2}.
\frac{39}{\frac{156-1}{2}}
Since \frac{156}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{39}{\frac{155}{2}}
Subtract 1 from 156 to get 155.
39\times \frac{2}{155}
Divide 39 by \frac{155}{2} by multiplying 39 by the reciprocal of \frac{155}{2}.
\frac{39\times 2}{155}
Express 39\times \frac{2}{155} as a single fraction.
\frac{78}{155}
Multiply 39 and 2 to get 78.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}