Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3i^{2}+4i}{\left(1-i\right)\left(1-i\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3\left(-1\right)+4i}{\left(1-i\right)\left(1-i\right)^{0}}
Calculate i to the power of 2 and get -1.
\frac{-3+4i}{\left(1-i\right)\left(1-i\right)^{0}}
Multiply 3 and -1 to get -3.
\frac{-3+4i}{\left(1-i\right)^{1}}
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
\frac{-3+4i}{1-i}
Calculate 1-i to the power of 1 and get 1-i.
\frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{-7+i}{2}
Do the multiplications in \frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{7}{2}+\frac{1}{2}i
Divide -7+i by 2 to get -\frac{7}{2}+\frac{1}{2}i.
Re(\frac{3i^{2}+4i}{\left(1-i\right)\left(1-i\right)^{0}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Re(\frac{3\left(-1\right)+4i}{\left(1-i\right)\left(1-i\right)^{0}})
Calculate i to the power of 2 and get -1.
Re(\frac{-3+4i}{\left(1-i\right)\left(1-i\right)^{0}})
Multiply 3 and -1 to get -3.
Re(\frac{-3+4i}{\left(1-i\right)^{1}})
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
Re(\frac{-3+4i}{1-i})
Calculate 1-i to the power of 1 and get 1-i.
Re(\frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{-3+4i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{-7+i}{2})
Do the multiplications in \frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{7}{2}+\frac{1}{2}i)
Divide -7+i by 2 to get -\frac{7}{2}+\frac{1}{2}i.
-\frac{7}{2}
The real part of -\frac{7}{2}+\frac{1}{2}i is -\frac{7}{2}.