Evaluate
-\frac{7}{2}+\frac{1}{2}i=-3.5+0.5i
Real Part
-\frac{7}{2} = -3\frac{1}{2} = -3.5
Share
Copied to clipboard
\frac{3i^{2}+4i}{\left(1-i\right)\left(1-i\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3\left(-1\right)+4i}{\left(1-i\right)\left(1-i\right)^{0}}
Calculate i to the power of 2 and get -1.
\frac{-3+4i}{\left(1-i\right)\left(1-i\right)^{0}}
Multiply 3 and -1 to get -3.
\frac{-3+4i}{\left(1-i\right)^{1}}
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
\frac{-3+4i}{1-i}
Calculate 1-i to the power of 1 and get 1-i.
\frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{-7+i}{2}
Do the multiplications in \frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{7}{2}+\frac{1}{2}i
Divide -7+i by 2 to get -\frac{7}{2}+\frac{1}{2}i.
Re(\frac{3i^{2}+4i}{\left(1-i\right)\left(1-i\right)^{0}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Re(\frac{3\left(-1\right)+4i}{\left(1-i\right)\left(1-i\right)^{0}})
Calculate i to the power of 2 and get -1.
Re(\frac{-3+4i}{\left(1-i\right)\left(1-i\right)^{0}})
Multiply 3 and -1 to get -3.
Re(\frac{-3+4i}{\left(1-i\right)^{1}})
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
Re(\frac{-3+4i}{1-i})
Calculate 1-i to the power of 1 and get 1-i.
Re(\frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{-3+4i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{-7+i}{2})
Do the multiplications in \frac{\left(-3+4i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{7}{2}+\frac{1}{2}i)
Divide -7+i by 2 to get -\frac{7}{2}+\frac{1}{2}i.
-\frac{7}{2}
The real part of -\frac{7}{2}+\frac{1}{2}i is -\frac{7}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}