Evaluate
\frac{\left(4-m\right)\left(m+7\right)}{8\left(x-4\right)}
Expand
-\frac{m^{2}+3m-28}{8\left(x-4\right)}
Graph
Share
Copied to clipboard
\left(-m+4\right)\times \frac{m+7}{8\left(x-4\right)}
Cancel out m+4 in both numerator and denominator.
\left(-m+4\right)\times \frac{m+7}{8x-32}
Use the distributive property to multiply 8 by x-4.
\frac{\left(-m+4\right)\left(m+7\right)}{8x-32}
Express \left(-m+4\right)\times \frac{m+7}{8x-32} as a single fraction.
\frac{-m^{2}-7m+4m+28}{8x-32}
Apply the distributive property by multiplying each term of -m+4 by each term of m+7.
\frac{-m^{2}-3m+28}{8x-32}
Combine -7m and 4m to get -3m.
\left(-m+4\right)\times \frac{m+7}{8\left(x-4\right)}
Cancel out m+4 in both numerator and denominator.
\left(-m+4\right)\times \frac{m+7}{8x-32}
Use the distributive property to multiply 8 by x-4.
\frac{\left(-m+4\right)\left(m+7\right)}{8x-32}
Express \left(-m+4\right)\times \frac{m+7}{8x-32} as a single fraction.
\frac{-m^{2}-7m+4m+28}{8x-32}
Apply the distributive property by multiplying each term of -m+4 by each term of m+7.
\frac{-m^{2}-3m+28}{8x-32}
Combine -7m and 4m to get -3m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}