Solve for x
x=\frac{2\sqrt{8103441}}{5479}+2\approx 3.039114565
x=-\frac{2\sqrt{8103441}}{5479}+2\approx 0.960885435
Graph
Share
Copied to clipboard
\left(4-2x\right)^{2}=1.479x\left(-x+4\right)
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(-x+4\right).
16-16x+4x^{2}=1.479x\left(-x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-2x\right)^{2}.
16-16x+4x^{2}=-1.479x^{2}+5.916x
Use the distributive property to multiply 1.479x by -x+4.
16-16x+4x^{2}+1.479x^{2}=5.916x
Add 1.479x^{2} to both sides.
16-16x+5.479x^{2}=5.916x
Combine 4x^{2} and 1.479x^{2} to get 5.479x^{2}.
16-16x+5.479x^{2}-5.916x=0
Subtract 5.916x from both sides.
16-21.916x+5.479x^{2}=0
Combine -16x and -5.916x to get -21.916x.
5.479x^{2}-21.916x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21.916\right)±\sqrt{\left(-21.916\right)^{2}-4\times 5.479\times 16}}{2\times 5.479}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5.479 for a, -21.916 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21.916\right)±\sqrt{480.311056-4\times 5.479\times 16}}{2\times 5.479}
Square -21.916 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-21.916\right)±\sqrt{480.311056-21.916\times 16}}{2\times 5.479}
Multiply -4 times 5.479.
x=\frac{-\left(-21.916\right)±\sqrt{480.311056-350.656}}{2\times 5.479}
Multiply -21.916 times 16.
x=\frac{-\left(-21.916\right)±\sqrt{129.655056}}{2\times 5.479}
Add 480.311056 to -350.656 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-21.916\right)±\frac{\sqrt{8103441}}{250}}{2\times 5.479}
Take the square root of 129.655056.
x=\frac{21.916±\frac{\sqrt{8103441}}{250}}{2\times 5.479}
The opposite of -21.916 is 21.916.
x=\frac{21.916±\frac{\sqrt{8103441}}{250}}{10.958}
Multiply 2 times 5.479.
x=\frac{\sqrt{8103441}+5479}{10.958\times 250}
Now solve the equation x=\frac{21.916±\frac{\sqrt{8103441}}{250}}{10.958} when ± is plus. Add 21.916 to \frac{\sqrt{8103441}}{250}.
x=\frac{2\sqrt{8103441}}{5479}+2
Divide \frac{5479+\sqrt{8103441}}{250} by 10.958 by multiplying \frac{5479+\sqrt{8103441}}{250} by the reciprocal of 10.958.
x=\frac{5479-\sqrt{8103441}}{10.958\times 250}
Now solve the equation x=\frac{21.916±\frac{\sqrt{8103441}}{250}}{10.958} when ± is minus. Subtract \frac{\sqrt{8103441}}{250} from 21.916.
x=-\frac{2\sqrt{8103441}}{5479}+2
Divide \frac{5479-\sqrt{8103441}}{250} by 10.958 by multiplying \frac{5479-\sqrt{8103441}}{250} by the reciprocal of 10.958.
x=\frac{2\sqrt{8103441}}{5479}+2 x=-\frac{2\sqrt{8103441}}{5479}+2
The equation is now solved.
\left(4-2x\right)^{2}=1.479x\left(-x+4\right)
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(-x+4\right).
16-16x+4x^{2}=1.479x\left(-x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-2x\right)^{2}.
16-16x+4x^{2}=-1.479x^{2}+5.916x
Use the distributive property to multiply 1.479x by -x+4.
16-16x+4x^{2}+1.479x^{2}=5.916x
Add 1.479x^{2} to both sides.
16-16x+5.479x^{2}=5.916x
Combine 4x^{2} and 1.479x^{2} to get 5.479x^{2}.
16-16x+5.479x^{2}-5.916x=0
Subtract 5.916x from both sides.
16-21.916x+5.479x^{2}=0
Combine -16x and -5.916x to get -21.916x.
-21.916x+5.479x^{2}=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
5.479x^{2}-21.916x=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5.479x^{2}-21.916x}{5.479}=-\frac{16}{5.479}
Divide both sides of the equation by 5.479, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{21.916}{5.479}\right)x=-\frac{16}{5.479}
Dividing by 5.479 undoes the multiplication by 5.479.
x^{2}-4x=-\frac{16}{5.479}
Divide -21.916 by 5.479 by multiplying -21.916 by the reciprocal of 5.479.
x^{2}-4x=-\frac{16000}{5479}
Divide -16 by 5.479 by multiplying -16 by the reciprocal of 5.479.
x^{2}-4x+\left(-2\right)^{2}=-\frac{16000}{5479}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{16000}{5479}+4
Square -2.
x^{2}-4x+4=\frac{5916}{5479}
Add -\frac{16000}{5479} to 4.
\left(x-2\right)^{2}=\frac{5916}{5479}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{5916}{5479}}
Take the square root of both sides of the equation.
x-2=\frac{2\sqrt{8103441}}{5479} x-2=-\frac{2\sqrt{8103441}}{5479}
Simplify.
x=\frac{2\sqrt{8103441}}{5479}+2 x=-\frac{2\sqrt{8103441}}{5479}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}