Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3x-7\right)\left(3x+7\right)=6\left(x-2\right)^{2}+3\left(2x+1\right)^{2}
Multiply both sides of the equation by 12, the least common multiple of 6,2,4.
\left(6x-14\right)\left(3x+7\right)=6\left(x-2\right)^{2}+3\left(2x+1\right)^{2}
Use the distributive property to multiply 2 by 3x-7.
18x^{2}-98=6\left(x-2\right)^{2}+3\left(2x+1\right)^{2}
Use the distributive property to multiply 6x-14 by 3x+7 and combine like terms.
18x^{2}-98=6\left(x^{2}-4x+4\right)+3\left(2x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
18x^{2}-98=6x^{2}-24x+24+3\left(2x+1\right)^{2}
Use the distributive property to multiply 6 by x^{2}-4x+4.
18x^{2}-98=6x^{2}-24x+24+3\left(4x^{2}+4x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
18x^{2}-98=6x^{2}-24x+24+12x^{2}+12x+3
Use the distributive property to multiply 3 by 4x^{2}+4x+1.
18x^{2}-98=18x^{2}-24x+24+12x+3
Combine 6x^{2} and 12x^{2} to get 18x^{2}.
18x^{2}-98=18x^{2}-12x+24+3
Combine -24x and 12x to get -12x.
18x^{2}-98=18x^{2}-12x+27
Add 24 and 3 to get 27.
18x^{2}-98-18x^{2}=-12x+27
Subtract 18x^{2} from both sides.
-98=-12x+27
Combine 18x^{2} and -18x^{2} to get 0.
-12x+27=-98
Swap sides so that all variable terms are on the left hand side.
-12x=-98-27
Subtract 27 from both sides.
-12x=-125
Subtract 27 from -98 to get -125.
x=\frac{-125}{-12}
Divide both sides by -12.
x=\frac{125}{12}
Fraction \frac{-125}{-12} can be simplified to \frac{125}{12} by removing the negative sign from both the numerator and the denominator.