Solve for x (complex solution)
x=-\frac{3}{2}+\frac{1}{2}i=-1.5+0.5i
x=-\frac{3}{2}-\frac{1}{2}i=-1.5-0.5i
Graph
Share
Copied to clipboard
\left(3x+\frac{5}{2}\right)\left(2x^{2}+6x+4\right)-\left(4x+6\right)\left(\frac{3}{2}x^{2}+\frac{5}{2}x\right)=0
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+1\right)^{2}\left(x+2\right)^{2}.
6x^{3}+23x^{2}+27x+10-\left(4x+6\right)\left(\frac{3}{2}x^{2}+\frac{5}{2}x\right)=0
Use the distributive property to multiply 3x+\frac{5}{2} by 2x^{2}+6x+4 and combine like terms.
6x^{3}+23x^{2}+27x+10-\left(6x^{3}+19x^{2}+15x\right)=0
Use the distributive property to multiply 4x+6 by \frac{3}{2}x^{2}+\frac{5}{2}x and combine like terms.
6x^{3}+23x^{2}+27x+10-6x^{3}-19x^{2}-15x=0
To find the opposite of 6x^{3}+19x^{2}+15x, find the opposite of each term.
23x^{2}+27x+10-19x^{2}-15x=0
Combine 6x^{3} and -6x^{3} to get 0.
4x^{2}+27x+10-15x=0
Combine 23x^{2} and -19x^{2} to get 4x^{2}.
4x^{2}+12x+10=0
Combine 27x and -15x to get 12x.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 10}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\times 10}}{2\times 4}
Square 12.
x=\frac{-12±\sqrt{144-16\times 10}}{2\times 4}
Multiply -4 times 4.
x=\frac{-12±\sqrt{144-160}}{2\times 4}
Multiply -16 times 10.
x=\frac{-12±\sqrt{-16}}{2\times 4}
Add 144 to -160.
x=\frac{-12±4i}{2\times 4}
Take the square root of -16.
x=\frac{-12±4i}{8}
Multiply 2 times 4.
x=\frac{-12+4i}{8}
Now solve the equation x=\frac{-12±4i}{8} when ± is plus. Add -12 to 4i.
x=-\frac{3}{2}+\frac{1}{2}i
Divide -12+4i by 8.
x=\frac{-12-4i}{8}
Now solve the equation x=\frac{-12±4i}{8} when ± is minus. Subtract 4i from -12.
x=-\frac{3}{2}-\frac{1}{2}i
Divide -12-4i by 8.
x=-\frac{3}{2}+\frac{1}{2}i x=-\frac{3}{2}-\frac{1}{2}i
The equation is now solved.
\left(3x+\frac{5}{2}\right)\left(2x^{2}+6x+4\right)-\left(4x+6\right)\left(\frac{3}{2}x^{2}+\frac{5}{2}x\right)=0
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+1\right)^{2}\left(x+2\right)^{2}.
6x^{3}+23x^{2}+27x+10-\left(4x+6\right)\left(\frac{3}{2}x^{2}+\frac{5}{2}x\right)=0
Use the distributive property to multiply 3x+\frac{5}{2} by 2x^{2}+6x+4 and combine like terms.
6x^{3}+23x^{2}+27x+10-\left(6x^{3}+19x^{2}+15x\right)=0
Use the distributive property to multiply 4x+6 by \frac{3}{2}x^{2}+\frac{5}{2}x and combine like terms.
6x^{3}+23x^{2}+27x+10-6x^{3}-19x^{2}-15x=0
To find the opposite of 6x^{3}+19x^{2}+15x, find the opposite of each term.
23x^{2}+27x+10-19x^{2}-15x=0
Combine 6x^{3} and -6x^{3} to get 0.
4x^{2}+27x+10-15x=0
Combine 23x^{2} and -19x^{2} to get 4x^{2}.
4x^{2}+12x+10=0
Combine 27x and -15x to get 12x.
4x^{2}+12x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+12x}{4}=-\frac{10}{4}
Divide both sides by 4.
x^{2}+\frac{12}{4}x=-\frac{10}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+3x=-\frac{10}{4}
Divide 12 by 4.
x^{2}+3x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{5}{2}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{5}{2}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{1}{4}
Add -\frac{5}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=-\frac{1}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{1}{2}i x+\frac{3}{2}=-\frac{1}{2}i
Simplify.
x=-\frac{3}{2}+\frac{1}{2}i x=-\frac{3}{2}-\frac{1}{2}i
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}