Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(3-a\right)\left(3-a\right)=72\times 2
Multiply both sides by 2.
\left(3-a\right)^{2}=72\times 2
Multiply 3-a and 3-a to get \left(3-a\right)^{2}.
9-6a+a^{2}=72\times 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-a\right)^{2}.
9-6a+a^{2}=144
Multiply 72 and 2 to get 144.
9-6a+a^{2}-144=0
Subtract 144 from both sides.
-135-6a+a^{2}=0
Subtract 144 from 9 to get -135.
a^{2}-6a-135=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-135\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -135 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\right)±\sqrt{36-4\left(-135\right)}}{2}
Square -6.
a=\frac{-\left(-6\right)±\sqrt{36+540}}{2}
Multiply -4 times -135.
a=\frac{-\left(-6\right)±\sqrt{576}}{2}
Add 36 to 540.
a=\frac{-\left(-6\right)±24}{2}
Take the square root of 576.
a=\frac{6±24}{2}
The opposite of -6 is 6.
a=\frac{30}{2}
Now solve the equation a=\frac{6±24}{2} when ± is plus. Add 6 to 24.
a=15
Divide 30 by 2.
a=-\frac{18}{2}
Now solve the equation a=\frac{6±24}{2} when ± is minus. Subtract 24 from 6.
a=-9
Divide -18 by 2.
a=15 a=-9
The equation is now solved.
\left(3-a\right)\left(3-a\right)=72\times 2
Multiply both sides by 2.
\left(3-a\right)^{2}=72\times 2
Multiply 3-a and 3-a to get \left(3-a\right)^{2}.
9-6a+a^{2}=72\times 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-a\right)^{2}.
9-6a+a^{2}=144
Multiply 72 and 2 to get 144.
-6a+a^{2}=144-9
Subtract 9 from both sides.
-6a+a^{2}=135
Subtract 9 from 144 to get 135.
a^{2}-6a=135
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-6a+\left(-3\right)^{2}=135+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-6a+9=135+9
Square -3.
a^{2}-6a+9=144
Add 135 to 9.
\left(a-3\right)^{2}=144
Factor a^{2}-6a+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-3\right)^{2}}=\sqrt{144}
Take the square root of both sides of the equation.
a-3=12 a-3=-12
Simplify.
a=15 a=-9
Add 3 to both sides of the equation.