Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-23}{4+3i}\times \frac{4-36}{4-3i}
Subtract 26 from 3 to get -23.
\frac{-23\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}\times \frac{4-36}{4-3i}
Multiply both numerator and denominator of \frac{-23}{4+3i} by the complex conjugate of the denominator, 4-3i.
\frac{-23\left(4-3i\right)}{4^{2}-3^{2}i^{2}}\times \frac{4-36}{4-3i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-23\left(4-3i\right)}{25}\times \frac{4-36}{4-3i}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-23\times 4-23\times \left(-3i\right)}{25}\times \frac{4-36}{4-3i}
Multiply -23 times 4-3i.
\frac{-92+69i}{25}\times \frac{4-36}{4-3i}
Do the multiplications in -23\times 4-23\times \left(-3i\right).
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{4-36}{4-3i}
Divide -92+69i by 25 to get -\frac{92}{25}+\frac{69}{25}i.
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32}{4-3i}
Subtract 36 from 4 to get -32.
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}
Multiply both numerator and denominator of \frac{-32}{4-3i} by the complex conjugate of the denominator, 4+3i.
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\left(4+3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\left(4+3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\times 4-32\times \left(3i\right)}{25}
Multiply -32 times 4+3i.
\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-128-96i}{25}
Do the multiplications in -32\times 4-32\times \left(3i\right).
\left(-\frac{92}{25}+\frac{69}{25}i\right)\left(-\frac{128}{25}-\frac{96}{25}i\right)
Divide -128-96i by 25 to get -\frac{128}{25}-\frac{96}{25}i.
-\frac{92}{25}\left(-\frac{128}{25}\right)-\frac{92}{25}\times \left(-\frac{96}{25}i\right)+\frac{69}{25}i\left(-\frac{128}{25}\right)+\frac{69}{25}\left(-\frac{96}{25}\right)i^{2}
Multiply complex numbers -\frac{92}{25}+\frac{69}{25}i and -\frac{128}{25}-\frac{96}{25}i like you multiply binomials.
-\frac{92}{25}\left(-\frac{128}{25}\right)-\frac{92}{25}\times \left(-\frac{96}{25}i\right)+\frac{69}{25}i\left(-\frac{128}{25}\right)+\frac{69}{25}\left(-\frac{96}{25}\right)\left(-1\right)
By definition, i^{2} is -1.
\frac{11776}{625}+\frac{8832}{625}i-\frac{8832}{625}i+\frac{6624}{625}
Do the multiplications.
\frac{11776}{625}+\frac{6624}{625}+\left(\frac{8832}{625}-\frac{8832}{625}\right)i
Combine the real and imaginary parts.
\frac{736}{25}
Do the additions.
Re(\frac{-23}{4+3i}\times \frac{4-36}{4-3i})
Subtract 26 from 3 to get -23.
Re(\frac{-23\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}\times \frac{4-36}{4-3i})
Multiply both numerator and denominator of \frac{-23}{4+3i} by the complex conjugate of the denominator, 4-3i.
Re(\frac{-23\left(4-3i\right)}{4^{2}-3^{2}i^{2}}\times \frac{4-36}{4-3i})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-23\left(4-3i\right)}{25}\times \frac{4-36}{4-3i})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-23\times 4-23\times \left(-3i\right)}{25}\times \frac{4-36}{4-3i})
Multiply -23 times 4-3i.
Re(\frac{-92+69i}{25}\times \frac{4-36}{4-3i})
Do the multiplications in -23\times 4-23\times \left(-3i\right).
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{4-36}{4-3i})
Divide -92+69i by 25 to get -\frac{92}{25}+\frac{69}{25}i.
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32}{4-3i})
Subtract 36 from 4 to get -32.
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)})
Multiply both numerator and denominator of \frac{-32}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\left(4+3i\right)}{4^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\left(4+3i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-32\times 4-32\times \left(3i\right)}{25})
Multiply -32 times 4+3i.
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\times \frac{-128-96i}{25})
Do the multiplications in -32\times 4-32\times \left(3i\right).
Re(\left(-\frac{92}{25}+\frac{69}{25}i\right)\left(-\frac{128}{25}-\frac{96}{25}i\right))
Divide -128-96i by 25 to get -\frac{128}{25}-\frac{96}{25}i.
Re(-\frac{92}{25}\left(-\frac{128}{25}\right)-\frac{92}{25}\times \left(-\frac{96}{25}i\right)+\frac{69}{25}i\left(-\frac{128}{25}\right)+\frac{69}{25}\left(-\frac{96}{25}\right)i^{2})
Multiply complex numbers -\frac{92}{25}+\frac{69}{25}i and -\frac{128}{25}-\frac{96}{25}i like you multiply binomials.
Re(-\frac{92}{25}\left(-\frac{128}{25}\right)-\frac{92}{25}\times \left(-\frac{96}{25}i\right)+\frac{69}{25}i\left(-\frac{128}{25}\right)+\frac{69}{25}\left(-\frac{96}{25}\right)\left(-1\right))
By definition, i^{2} is -1.
Re(\frac{11776}{625}+\frac{8832}{625}i-\frac{8832}{625}i+\frac{6624}{625})
Do the multiplications in -\frac{92}{25}\left(-\frac{128}{25}\right)-\frac{92}{25}\times \left(-\frac{96}{25}i\right)+\frac{69}{25}i\left(-\frac{128}{25}\right)+\frac{69}{25}\left(-\frac{96}{25}\right)\left(-1\right).
Re(\frac{11776}{625}+\frac{6624}{625}+\left(\frac{8832}{625}-\frac{8832}{625}\right)i)
Combine the real and imaginary parts in \frac{11776}{625}+\frac{8832}{625}i-\frac{8832}{625}i+\frac{6624}{625}.
Re(\frac{736}{25})
Do the additions in \frac{11776}{625}+\frac{6624}{625}+\left(\frac{8832}{625}-\frac{8832}{625}\right)i.
\frac{736}{25}
The real part of \frac{736}{25} is \frac{736}{25}.