\frac { ( 3 - 2 ) \cdot 10 \cdot 0,4 } { 3 + 2 + \frac { 1 } { 2 } - 10 }
Evaluate
-\frac{8}{9}\approx -0,888888889
Factor
-\frac{8}{9} = -0.8888888888888888
Quiz
5 problems similar to:
\frac { ( 3 - 2 ) \cdot 10 \cdot 0,4 } { 3 + 2 + \frac { 1 } { 2 } - 10 }
Share
Copied to clipboard
\frac{1\times 10\times 0,4}{3+2+\frac{1}{2}-10}
Subtract 2 from 3 to get 1.
\frac{10\times 0,4}{3+2+\frac{1}{2}-10}
Multiply 1 and 10 to get 10.
\frac{4}{3+2+\frac{1}{2}-10}
Multiply 10 and 0,4 to get 4.
\frac{4}{5+\frac{1}{2}-10}
Add 3 and 2 to get 5.
\frac{4}{\frac{10}{2}+\frac{1}{2}-10}
Convert 5 to fraction \frac{10}{2}.
\frac{4}{\frac{10+1}{2}-10}
Since \frac{10}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{4}{\frac{11}{2}-10}
Add 10 and 1 to get 11.
\frac{4}{\frac{11}{2}-\frac{20}{2}}
Convert 10 to fraction \frac{20}{2}.
\frac{4}{\frac{11-20}{2}}
Since \frac{11}{2} and \frac{20}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{-\frac{9}{2}}
Subtract 20 from 11 to get -9.
4\left(-\frac{2}{9}\right)
Divide 4 by -\frac{9}{2} by multiplying 4 by the reciprocal of -\frac{9}{2}.
\frac{4\left(-2\right)}{9}
Express 4\left(-\frac{2}{9}\right) as a single fraction.
\frac{-8}{9}
Multiply 4 and -2 to get -8.
-\frac{8}{9}
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}