Evaluate
\frac{165}{128}=1.2890625
Factor
\frac{3 \cdot 5 \cdot 11}{2 ^ {7}} = 1\frac{37}{128} = 1.2890625
Share
Copied to clipboard
\frac{\left(3-\frac{1}{4}\right)\left(4-\frac{5}{4}\right)}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Divide \frac{3-\frac{1}{4}}{\frac{14}{5}-2} by \frac{8-\frac{2}{3}}{4-\frac{5}{4}} by multiplying \frac{3-\frac{1}{4}}{\frac{14}{5}-2} by the reciprocal of \frac{8-\frac{2}{3}}{4-\frac{5}{4}}.
\frac{\left(\frac{12}{4}-\frac{1}{4}\right)\left(4-\frac{5}{4}\right)}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Convert 3 to fraction \frac{12}{4}.
\frac{\frac{12-1}{4}\left(4-\frac{5}{4}\right)}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Since \frac{12}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11}{4}\left(4-\frac{5}{4}\right)}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Subtract 1 from 12 to get 11.
\frac{\frac{11}{4}\left(\frac{16}{4}-\frac{5}{4}\right)}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Convert 4 to fraction \frac{16}{4}.
\frac{\frac{11}{4}\times \frac{16-5}{4}}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Since \frac{16}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11}{4}\times \frac{11}{4}}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Subtract 5 from 16 to get 11.
\frac{\frac{11\times 11}{4\times 4}}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Multiply \frac{11}{4} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{121}{16}}{\left(\frac{14}{5}-2\right)\left(8-\frac{2}{3}\right)}
Do the multiplications in the fraction \frac{11\times 11}{4\times 4}.
\frac{\frac{121}{16}}{\left(\frac{14}{5}-\frac{10}{5}\right)\left(8-\frac{2}{3}\right)}
Convert 2 to fraction \frac{10}{5}.
\frac{\frac{121}{16}}{\frac{14-10}{5}\left(8-\frac{2}{3}\right)}
Since \frac{14}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{121}{16}}{\frac{4}{5}\left(8-\frac{2}{3}\right)}
Subtract 10 from 14 to get 4.
\frac{\frac{121}{16}}{\frac{4}{5}\left(\frac{24}{3}-\frac{2}{3}\right)}
Convert 8 to fraction \frac{24}{3}.
\frac{\frac{121}{16}}{\frac{4}{5}\times \frac{24-2}{3}}
Since \frac{24}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{121}{16}}{\frac{4}{5}\times \frac{22}{3}}
Subtract 2 from 24 to get 22.
\frac{\frac{121}{16}}{\frac{4\times 22}{5\times 3}}
Multiply \frac{4}{5} times \frac{22}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{121}{16}}{\frac{88}{15}}
Do the multiplications in the fraction \frac{4\times 22}{5\times 3}.
\frac{121}{16}\times \frac{15}{88}
Divide \frac{121}{16} by \frac{88}{15} by multiplying \frac{121}{16} by the reciprocal of \frac{88}{15}.
\frac{121\times 15}{16\times 88}
Multiply \frac{121}{16} times \frac{15}{88} by multiplying numerator times numerator and denominator times denominator.
\frac{1815}{1408}
Do the multiplications in the fraction \frac{121\times 15}{16\times 88}.
\frac{165}{128}
Reduce the fraction \frac{1815}{1408} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}