Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\frac{81+11}{27}-\frac{2\times 18+17}{18}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Multiply 3 and 27 to get 81.
\frac{\frac{\frac{92}{27}-\frac{2\times 18+17}{18}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Add 81 and 11 to get 92.
\frac{\frac{\frac{92}{27}-\frac{36+17}{18}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Multiply 2 and 18 to get 36.
\frac{\frac{\frac{92}{27}-\frac{53}{18}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Add 36 and 17 to get 53.
\frac{\frac{\frac{184}{54}-\frac{159}{54}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Least common multiple of 27 and 18 is 54. Convert \frac{92}{27} and \frac{53}{18} to fractions with denominator 54.
\frac{\frac{\frac{184-159}{54}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Since \frac{184}{54} and \frac{159}{54} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{25}{54}}{\frac{1\times 27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Subtract 159 from 184 to get 25.
\frac{\frac{\frac{25}{54}}{\frac{27+23}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Multiply 1 and 27 to get 27.
\frac{\frac{\frac{25}{54}}{\frac{50}{27}}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Add 27 and 23 to get 50.
\frac{\frac{25}{54}\times \frac{27}{50}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Divide \frac{25}{54} by \frac{50}{27} by multiplying \frac{25}{54} by the reciprocal of \frac{50}{27}.
\frac{\frac{25\times 27}{54\times 50}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Multiply \frac{25}{54} times \frac{27}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{675}{2700}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Do the multiplications in the fraction \frac{25\times 27}{54\times 50}.
\frac{\frac{1}{4}-\frac{\frac{3\times 5+3}{5}}{3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Reduce the fraction \frac{675}{2700} to lowest terms by extracting and canceling out 675.
\frac{\frac{1}{4}-\frac{3\times 5+3}{5\times 3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Express \frac{\frac{3\times 5+3}{5}}{3} as a single fraction.
\frac{\frac{1}{4}-\frac{15+3}{5\times 3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Multiply 3 and 5 to get 15.
\frac{\frac{1}{4}-\frac{18}{5\times 3}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Add 15 and 3 to get 18.
\frac{\frac{1}{4}-\frac{18}{15}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Multiply 5 and 3 to get 15.
\frac{\frac{1}{4}-\frac{6}{5}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Reduce the fraction \frac{18}{15} to lowest terms by extracting and canceling out 3.
\frac{\frac{5}{20}-\frac{24}{20}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Least common multiple of 4 and 5 is 20. Convert \frac{1}{4} and \frac{6}{5} to fractions with denominator 20.
\frac{\frac{5-24}{20}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Since \frac{5}{20} and \frac{24}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{19}{20}}{\frac{43-\frac{42\times 3+2}{3}}{\frac{2}{3}}}+2,5
Subtract 24 from 5 to get -19.
\frac{-\frac{19}{20}}{\frac{43-\frac{126+2}{3}}{\frac{2}{3}}}+2,5
Multiply 42 and 3 to get 126.
\frac{-\frac{19}{20}}{\frac{43-\frac{128}{3}}{\frac{2}{3}}}+2,5
Add 126 and 2 to get 128.
\frac{-\frac{19}{20}}{\frac{\frac{129}{3}-\frac{128}{3}}{\frac{2}{3}}}+2,5
Convert 43 to fraction \frac{129}{3}.
\frac{-\frac{19}{20}}{\frac{\frac{129-128}{3}}{\frac{2}{3}}}+2,5
Since \frac{129}{3} and \frac{128}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{19}{20}}{\frac{\frac{1}{3}}{\frac{2}{3}}}+2,5
Subtract 128 from 129 to get 1.
\frac{-\frac{19}{20}}{\frac{1}{3}\times \frac{3}{2}}+2,5
Divide \frac{1}{3} by \frac{2}{3} by multiplying \frac{1}{3} by the reciprocal of \frac{2}{3}.
\frac{-\frac{19}{20}}{\frac{1\times 3}{3\times 2}}+2,5
Multiply \frac{1}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{19}{20}}{\frac{1}{2}}+2,5
Cancel out 3 in both numerator and denominator.
-\frac{19}{20}\times 2+2,5
Divide -\frac{19}{20} by \frac{1}{2} by multiplying -\frac{19}{20} by the reciprocal of \frac{1}{2}.
\frac{-19\times 2}{20}+2,5
Express -\frac{19}{20}\times 2 as a single fraction.
\frac{-38}{20}+2,5
Multiply -19 and 2 to get -38.
-\frac{19}{10}+2,5
Reduce the fraction \frac{-38}{20} to lowest terms by extracting and canceling out 2.
-\frac{19}{10}+\frac{5}{2}
Convert decimal number 2,5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
-\frac{19}{10}+\frac{25}{10}
Least common multiple of 10 and 2 is 10. Convert -\frac{19}{10} and \frac{5}{2} to fractions with denominator 10.
\frac{-19+25}{10}
Since -\frac{19}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
\frac{6}{10}
Add -19 and 25 to get 6.
\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.