Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(k+3\right)^{2}}{3\left(k+3\right)}\times \frac{6-6k}{9-k^{2}}
Factor the expressions that are not already factored in \frac{\left(3+k\right)^{2}}{9+3k}.
\frac{k+3}{3}\times \frac{6-6k}{9-k^{2}}
Cancel out k+3 in both numerator and denominator.
\frac{\left(k+3\right)\left(6-6k\right)}{3\left(9-k^{2}\right)}
Multiply \frac{k+3}{3} times \frac{6-6k}{9-k^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{6\left(k+3\right)\left(-k+1\right)}{3\left(k-3\right)\left(-k-3\right)}
Factor the expressions that are not already factored.
\frac{-6\left(-k-3\right)\left(-k+1\right)}{3\left(k-3\right)\left(-k-3\right)}
Extract the negative sign in 3+k.
\frac{-2\left(-k+1\right)}{k-3}
Cancel out 3\left(-k-3\right) in both numerator and denominator.
\frac{2k-2}{k-3}
Expand the expression.
\frac{\left(k+3\right)^{2}}{3\left(k+3\right)}\times \frac{6-6k}{9-k^{2}}
Factor the expressions that are not already factored in \frac{\left(3+k\right)^{2}}{9+3k}.
\frac{k+3}{3}\times \frac{6-6k}{9-k^{2}}
Cancel out k+3 in both numerator and denominator.
\frac{\left(k+3\right)\left(6-6k\right)}{3\left(9-k^{2}\right)}
Multiply \frac{k+3}{3} times \frac{6-6k}{9-k^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{6\left(k+3\right)\left(-k+1\right)}{3\left(k-3\right)\left(-k-3\right)}
Factor the expressions that are not already factored.
\frac{-6\left(-k-3\right)\left(-k+1\right)}{3\left(k-3\right)\left(-k-3\right)}
Extract the negative sign in 3+k.
\frac{-2\left(-k+1\right)}{k-3}
Cancel out 3\left(-k-3\right) in both numerator and denominator.
\frac{2k-2}{k-3}
Expand the expression.