Evaluate
32h^{6}
Differentiate w.r.t. h
192h^{5}
Share
Copied to clipboard
\frac{2^{2}h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Expand \left(2h\right)^{2}.
\frac{4h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Calculate 2 to the power of 2 and get 4.
\frac{4h^{2}\times 16^{\frac{1}{4}}\left(h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Expand \left(16h^{8}\right)^{\frac{1}{4}}.
\frac{4h^{2}\times 16^{\frac{1}{4}}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 8 and \frac{1}{4} to get 2.
\frac{4h^{2}\times 2h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Calculate 16 to the power of \frac{1}{4} and get 2.
\frac{8h^{2}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Multiply 4 and 2 to get 8.
\frac{8h^{4}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{8h^{4}}{\left(2h\right)^{-2}}
Calculate 8 to the power of \frac{1}{3} and get 2.
\frac{8h^{4}}{2^{-2}h^{-2}}
Expand \left(2h\right)^{-2}.
\frac{8h^{4}}{\frac{1}{4}h^{-2}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{8h^{6}}{\frac{1}{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
8h^{6}\times 4
Divide 8h^{6} by \frac{1}{4} by multiplying 8h^{6} by the reciprocal of \frac{1}{4}.
32h^{6}
Multiply 8 and 4 to get 32.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{2^{2}h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Expand \left(2h\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times 16^{\frac{1}{4}}\left(h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Expand \left(16h^{8}\right)^{\frac{1}{4}}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times 16^{\frac{1}{4}}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
To raise a power to another power, multiply the exponents. Multiply 8 and \frac{1}{4} to get 2.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times 2h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Calculate 16 to the power of \frac{1}{4} and get 2.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{2}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{\left(2h\right)^{-2}})
Calculate 8 to the power of \frac{1}{3} and get 2.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{2^{-2}h^{-2}})
Expand \left(2h\right)^{-2}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{\frac{1}{4}h^{-2}})
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{6}}{\frac{1}{4}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}h}(8h^{6}\times 4)
Divide 8h^{6} by \frac{1}{4} by multiplying 8h^{6} by the reciprocal of \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}h}(32h^{6})
Multiply 8 and 4 to get 32.
6\times 32h^{6-1}
The derivative of ax^{n} is nax^{n-1}.
192h^{6-1}
Multiply 6 times 32.
192h^{5}
Subtract 1 from 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}