Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. h
Tick mark Image

Similar Problems from Web Search

Share

\frac{2^{2}h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Expand \left(2h\right)^{2}.
\frac{4h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Calculate 2 to the power of 2 and get 4.
\frac{4h^{2}\times 16^{\frac{1}{4}}\left(h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Expand \left(16h^{8}\right)^{\frac{1}{4}}.
\frac{4h^{2}\times 16^{\frac{1}{4}}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 8 and \frac{1}{4} to get 2.
\frac{4h^{2}\times 2h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Calculate 16 to the power of \frac{1}{4} and get 2.
\frac{8h^{2}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
Multiply 4 and 2 to get 8.
\frac{8h^{4}}{\left(8^{\frac{1}{3}}h\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{8h^{4}}{\left(2h\right)^{-2}}
Calculate 8 to the power of \frac{1}{3} and get 2.
\frac{8h^{4}}{2^{-2}h^{-2}}
Expand \left(2h\right)^{-2}.
\frac{8h^{4}}{\frac{1}{4}h^{-2}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{8h^{6}}{\frac{1}{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
8h^{6}\times 4
Divide 8h^{6} by \frac{1}{4} by multiplying 8h^{6} by the reciprocal of \frac{1}{4}.
32h^{6}
Multiply 8 and 4 to get 32.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{2^{2}h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Expand \left(2h\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times \left(16h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times 16^{\frac{1}{4}}\left(h^{8}\right)^{\frac{1}{4}}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Expand \left(16h^{8}\right)^{\frac{1}{4}}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times 16^{\frac{1}{4}}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
To raise a power to another power, multiply the exponents. Multiply 8 and \frac{1}{4} to get 2.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{4h^{2}\times 2h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Calculate 16 to the power of \frac{1}{4} and get 2.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{2}h^{2}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{\left(8^{\frac{1}{3}}h\right)^{-2}})
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{\left(2h\right)^{-2}})
Calculate 8 to the power of \frac{1}{3} and get 2.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{2^{-2}h^{-2}})
Expand \left(2h\right)^{-2}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{4}}{\frac{1}{4}h^{-2}})
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h^{6}}{\frac{1}{4}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}h}(8h^{6}\times 4)
Divide 8h^{6} by \frac{1}{4} by multiplying 8h^{6} by the reciprocal of \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}h}(32h^{6})
Multiply 8 and 4 to get 32.
6\times 32h^{6-1}
The derivative of ax^{n} is nax^{n-1}.
192h^{6-1}
Multiply 6 times 32.
192h^{5}
Subtract 1 from 6.