Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{\left(4\times \frac{2}{3}+\frac{3\times 7+4}{7}\right)^{2}+\left(\frac{2\times 3+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\frac{8}{3}+\frac{3\times 7+4}{7}\right)^{2}+\left(\frac{2\times 3+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Multiply 4 and \frac{2}{3} to get \frac{8}{3}.
\frac{\left(\frac{8}{3}+\frac{21+4}{7}\right)^{2}+\left(\frac{2\times 3+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Multiply 3 and 7 to get 21.
\frac{\left(\frac{8}{3}+\frac{25}{7}\right)^{2}+\left(\frac{2\times 3+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Add 21 and 4 to get 25.
\frac{\left(\frac{131}{21}\right)^{2}+\left(\frac{2\times 3+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Add \frac{8}{3} and \frac{25}{7} to get \frac{131}{21}.
\frac{\frac{17161}{441}+\left(\frac{2\times 3+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Calculate \frac{131}{21} to the power of 2 and get \frac{17161}{441}.
\frac{\frac{17161}{441}+\left(\frac{6+2}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Multiply 2 and 3 to get 6.
\frac{\frac{17161}{441}+\left(\frac{8}{3}-\frac{3\times 7+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Add 6 and 2 to get 8.
\frac{\frac{17161}{441}+\left(\frac{8}{3}-\frac{21+4}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Multiply 3 and 7 to get 21.
\frac{\frac{17161}{441}+\left(\frac{8}{3}-\frac{25}{7}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Add 21 and 4 to get 25.
\frac{\frac{17161}{441}+\left(-\frac{19}{21}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Subtract \frac{25}{7} from \frac{8}{3} to get -\frac{19}{21}.
\frac{\frac{17161}{441}+\frac{361}{441}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Calculate -\frac{19}{21} to the power of 2 and get \frac{361}{441}.
\frac{\frac{17522}{441}}{\left(\frac{8}{3}\right)^{2}+\left(\frac{25}{7}\right)^{2}}
Add \frac{17161}{441} and \frac{361}{441} to get \frac{17522}{441}.
\frac{\frac{17522}{441}}{\frac{64}{9}+\left(\frac{25}{7}\right)^{2}}
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
\frac{\frac{17522}{441}}{\frac{64}{9}+\frac{625}{49}}
Calculate \frac{25}{7} to the power of 2 and get \frac{625}{49}.
\frac{\frac{17522}{441}}{\frac{8761}{441}}
Add \frac{64}{9} and \frac{625}{49} to get \frac{8761}{441}.
\frac{17522}{441}\times \frac{441}{8761}
Divide \frac{17522}{441} by \frac{8761}{441} by multiplying \frac{17522}{441} by the reciprocal of \frac{8761}{441}.
2
Multiply \frac{17522}{441} and \frac{441}{8761} to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}