Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{289x^{2}-34x+1}{13^{2}}=\left(x-1\right)\times 2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17x-1\right)^{2}.
\frac{289x^{2}-34x+1}{169}=\left(x-1\right)\times 2x
Calculate 13 to the power of 2 and get 169.
\frac{289x^{2}-34x+1}{169}=\left(2x-2\right)x
Use the distributive property to multiply x-1 by 2.
\frac{289x^{2}-34x+1}{169}=2x^{2}-2x
Use the distributive property to multiply 2x-2 by x.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=2x^{2}-2x
Divide each term of 289x^{2}-34x+1 by 169 to get \frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}-2x^{2}=-2x
Subtract 2x^{2} from both sides.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=-2x
Combine \frac{289}{169}x^{2} and -2x^{2} to get -\frac{49}{169}x^{2}.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}+2x=0
Add 2x to both sides.
-\frac{49}{169}x^{2}+\frac{304}{169}x+\frac{1}{169}=0
Combine -\frac{34}{169}x and 2x to get \frac{304}{169}x.
x=\frac{-\frac{304}{169}±\sqrt{\left(\frac{304}{169}\right)^{2}-4\left(-\frac{49}{169}\right)\times \frac{1}{169}}}{2\left(-\frac{49}{169}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{49}{169} for a, \frac{304}{169} for b, and \frac{1}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{304}{169}±\sqrt{\frac{92416}{28561}-4\left(-\frac{49}{169}\right)\times \frac{1}{169}}}{2\left(-\frac{49}{169}\right)}
Square \frac{304}{169} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{304}{169}±\sqrt{\frac{92416}{28561}+\frac{196}{169}\times \frac{1}{169}}}{2\left(-\frac{49}{169}\right)}
Multiply -4 times -\frac{49}{169}.
x=\frac{-\frac{304}{169}±\sqrt{\frac{92416+196}{28561}}}{2\left(-\frac{49}{169}\right)}
Multiply \frac{196}{169} times \frac{1}{169} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{304}{169}±\sqrt{\frac{548}{169}}}{2\left(-\frac{49}{169}\right)}
Add \frac{92416}{28561} to \frac{196}{28561} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{2\left(-\frac{49}{169}\right)}
Take the square root of \frac{548}{169}.
x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{-\frac{98}{169}}
Multiply 2 times -\frac{49}{169}.
x=\frac{\frac{2\sqrt{137}}{13}-\frac{304}{169}}{-\frac{98}{169}}
Now solve the equation x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{-\frac{98}{169}} when ± is plus. Add -\frac{304}{169} to \frac{2\sqrt{137}}{13}.
x=\frac{152-13\sqrt{137}}{49}
Divide -\frac{304}{169}+\frac{2\sqrt{137}}{13} by -\frac{98}{169} by multiplying -\frac{304}{169}+\frac{2\sqrt{137}}{13} by the reciprocal of -\frac{98}{169}.
x=\frac{-\frac{2\sqrt{137}}{13}-\frac{304}{169}}{-\frac{98}{169}}
Now solve the equation x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{-\frac{98}{169}} when ± is minus. Subtract \frac{2\sqrt{137}}{13} from -\frac{304}{169}.
x=\frac{13\sqrt{137}+152}{49}
Divide -\frac{304}{169}-\frac{2\sqrt{137}}{13} by -\frac{98}{169} by multiplying -\frac{304}{169}-\frac{2\sqrt{137}}{13} by the reciprocal of -\frac{98}{169}.
x=\frac{152-13\sqrt{137}}{49} x=\frac{13\sqrt{137}+152}{49}
The equation is now solved.
\frac{289x^{2}-34x+1}{13^{2}}=\left(x-1\right)\times 2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17x-1\right)^{2}.
\frac{289x^{2}-34x+1}{169}=\left(x-1\right)\times 2x
Calculate 13 to the power of 2 and get 169.
\frac{289x^{2}-34x+1}{169}=\left(2x-2\right)x
Use the distributive property to multiply x-1 by 2.
\frac{289x^{2}-34x+1}{169}=2x^{2}-2x
Use the distributive property to multiply 2x-2 by x.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=2x^{2}-2x
Divide each term of 289x^{2}-34x+1 by 169 to get \frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}-2x^{2}=-2x
Subtract 2x^{2} from both sides.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=-2x
Combine \frac{289}{169}x^{2} and -2x^{2} to get -\frac{49}{169}x^{2}.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}+2x=0
Add 2x to both sides.
-\frac{49}{169}x^{2}+\frac{304}{169}x+\frac{1}{169}=0
Combine -\frac{34}{169}x and 2x to get \frac{304}{169}x.
-\frac{49}{169}x^{2}+\frac{304}{169}x=-\frac{1}{169}
Subtract \frac{1}{169} from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{49}{169}x^{2}+\frac{304}{169}x}{-\frac{49}{169}}=-\frac{\frac{1}{169}}{-\frac{49}{169}}
Divide both sides of the equation by -\frac{49}{169}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{304}{169}}{-\frac{49}{169}}x=-\frac{\frac{1}{169}}{-\frac{49}{169}}
Dividing by -\frac{49}{169} undoes the multiplication by -\frac{49}{169}.
x^{2}-\frac{304}{49}x=-\frac{\frac{1}{169}}{-\frac{49}{169}}
Divide \frac{304}{169} by -\frac{49}{169} by multiplying \frac{304}{169} by the reciprocal of -\frac{49}{169}.
x^{2}-\frac{304}{49}x=\frac{1}{49}
Divide -\frac{1}{169} by -\frac{49}{169} by multiplying -\frac{1}{169} by the reciprocal of -\frac{49}{169}.
x^{2}-\frac{304}{49}x+\left(-\frac{152}{49}\right)^{2}=\frac{1}{49}+\left(-\frac{152}{49}\right)^{2}
Divide -\frac{304}{49}, the coefficient of the x term, by 2 to get -\frac{152}{49}. Then add the square of -\frac{152}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{304}{49}x+\frac{23104}{2401}=\frac{1}{49}+\frac{23104}{2401}
Square -\frac{152}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{304}{49}x+\frac{23104}{2401}=\frac{23153}{2401}
Add \frac{1}{49} to \frac{23104}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{152}{49}\right)^{2}=\frac{23153}{2401}
Factor x^{2}-\frac{304}{49}x+\frac{23104}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{152}{49}\right)^{2}}=\sqrt{\frac{23153}{2401}}
Take the square root of both sides of the equation.
x-\frac{152}{49}=\frac{13\sqrt{137}}{49} x-\frac{152}{49}=-\frac{13\sqrt{137}}{49}
Simplify.
x=\frac{13\sqrt{137}+152}{49} x=\frac{152-13\sqrt{137}}{49}
Add \frac{152}{49} to both sides of the equation.