Evaluate
\frac{1}{81x^{2}}
Expand
\frac{1}{81x^{2}}
Share
Copied to clipboard
\frac{15^{-4}\left(x^{2}\right)^{-4}\left(y^{-3}\right)^{-4}}{\left(25x^{3}y^{-6}\right)^{-2}}
Expand \left(15x^{2}y^{-3}\right)^{-4}.
\frac{15^{-4}x^{-8}\left(y^{-3}\right)^{-4}}{\left(25x^{3}y^{-6}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -4 to get -8.
\frac{15^{-4}x^{-8}y^{12}}{\left(25x^{3}y^{-6}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -4 to get 12.
\frac{\frac{1}{50625}x^{-8}y^{12}}{\left(25x^{3}y^{-6}\right)^{-2}}
Calculate 15 to the power of -4 and get \frac{1}{50625}.
\frac{\frac{1}{50625}x^{-8}y^{12}}{25^{-2}\left(x^{3}\right)^{-2}\left(y^{-6}\right)^{-2}}
Expand \left(25x^{3}y^{-6}\right)^{-2}.
\frac{\frac{1}{50625}x^{-8}y^{12}}{25^{-2}x^{-6}\left(y^{-6}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{50625}x^{-8}y^{12}}{25^{-2}x^{-6}y^{12}}
To raise a power to another power, multiply the exponents. Multiply -6 and -2 to get 12.
\frac{\frac{1}{50625}x^{-8}y^{12}}{\frac{1}{625}x^{-6}y^{12}}
Calculate 25 to the power of -2 and get \frac{1}{625}.
\frac{\frac{1}{50625}x^{-8}}{\frac{1}{625}x^{-6}}
Cancel out y^{12} in both numerator and denominator.
\frac{\frac{1}{50625}}{\frac{1}{625}x^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{50625\times \frac{1}{625}x^{2}}
Express \frac{\frac{1}{50625}}{\frac{1}{625}x^{2}} as a single fraction.
\frac{1}{81x^{2}}
Multiply 50625 and \frac{1}{625} to get 81.
\frac{15^{-4}\left(x^{2}\right)^{-4}\left(y^{-3}\right)^{-4}}{\left(25x^{3}y^{-6}\right)^{-2}}
Expand \left(15x^{2}y^{-3}\right)^{-4}.
\frac{15^{-4}x^{-8}\left(y^{-3}\right)^{-4}}{\left(25x^{3}y^{-6}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -4 to get -8.
\frac{15^{-4}x^{-8}y^{12}}{\left(25x^{3}y^{-6}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -4 to get 12.
\frac{\frac{1}{50625}x^{-8}y^{12}}{\left(25x^{3}y^{-6}\right)^{-2}}
Calculate 15 to the power of -4 and get \frac{1}{50625}.
\frac{\frac{1}{50625}x^{-8}y^{12}}{25^{-2}\left(x^{3}\right)^{-2}\left(y^{-6}\right)^{-2}}
Expand \left(25x^{3}y^{-6}\right)^{-2}.
\frac{\frac{1}{50625}x^{-8}y^{12}}{25^{-2}x^{-6}\left(y^{-6}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{50625}x^{-8}y^{12}}{25^{-2}x^{-6}y^{12}}
To raise a power to another power, multiply the exponents. Multiply -6 and -2 to get 12.
\frac{\frac{1}{50625}x^{-8}y^{12}}{\frac{1}{625}x^{-6}y^{12}}
Calculate 25 to the power of -2 and get \frac{1}{625}.
\frac{\frac{1}{50625}x^{-8}}{\frac{1}{625}x^{-6}}
Cancel out y^{12} in both numerator and denominator.
\frac{\frac{1}{50625}}{\frac{1}{625}x^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{50625\times \frac{1}{625}x^{2}}
Express \frac{\frac{1}{50625}}{\frac{1}{625}x^{2}} as a single fraction.
\frac{1}{81x^{2}}
Multiply 50625 and \frac{1}{625} to get 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}