Solve for d
d=2
d=-2
Share
Copied to clipboard
-6\left(14-3d\right)\left(14+3d\right)=5\left(d-14\right)\left(d+14\right)
Variable d cannot be equal to any of the values -14,14 since division by zero is not defined. Multiply both sides of the equation by 6\left(d-14\right)\left(d+14\right), the least common multiple of \left(14-d\right)\left(14+d\right),6.
\left(-84+18d\right)\left(14+3d\right)=5\left(d-14\right)\left(d+14\right)
Use the distributive property to multiply -6 by 14-3d.
-1176+54d^{2}=5\left(d-14\right)\left(d+14\right)
Use the distributive property to multiply -84+18d by 14+3d and combine like terms.
-1176+54d^{2}=\left(5d-70\right)\left(d+14\right)
Use the distributive property to multiply 5 by d-14.
-1176+54d^{2}=5d^{2}-980
Use the distributive property to multiply 5d-70 by d+14 and combine like terms.
-1176+54d^{2}-5d^{2}=-980
Subtract 5d^{2} from both sides.
-1176+49d^{2}=-980
Combine 54d^{2} and -5d^{2} to get 49d^{2}.
49d^{2}=-980+1176
Add 1176 to both sides.
49d^{2}=196
Add -980 and 1176 to get 196.
d^{2}=\frac{196}{49}
Divide both sides by 49.
d^{2}=4
Divide 196 by 49 to get 4.
d=2 d=-2
Take the square root of both sides of the equation.
-6\left(14-3d\right)\left(14+3d\right)=5\left(d-14\right)\left(d+14\right)
Variable d cannot be equal to any of the values -14,14 since division by zero is not defined. Multiply both sides of the equation by 6\left(d-14\right)\left(d+14\right), the least common multiple of \left(14-d\right)\left(14+d\right),6.
\left(-84+18d\right)\left(14+3d\right)=5\left(d-14\right)\left(d+14\right)
Use the distributive property to multiply -6 by 14-3d.
-1176+54d^{2}=5\left(d-14\right)\left(d+14\right)
Use the distributive property to multiply -84+18d by 14+3d and combine like terms.
-1176+54d^{2}=\left(5d-70\right)\left(d+14\right)
Use the distributive property to multiply 5 by d-14.
-1176+54d^{2}=5d^{2}-980
Use the distributive property to multiply 5d-70 by d+14 and combine like terms.
-1176+54d^{2}-5d^{2}=-980
Subtract 5d^{2} from both sides.
-1176+49d^{2}=-980
Combine 54d^{2} and -5d^{2} to get 49d^{2}.
-1176+49d^{2}+980=0
Add 980 to both sides.
-196+49d^{2}=0
Add -1176 and 980 to get -196.
49d^{2}-196=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
d=\frac{0±\sqrt{0^{2}-4\times 49\left(-196\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 0 for b, and -196 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\times 49\left(-196\right)}}{2\times 49}
Square 0.
d=\frac{0±\sqrt{-196\left(-196\right)}}{2\times 49}
Multiply -4 times 49.
d=\frac{0±\sqrt{38416}}{2\times 49}
Multiply -196 times -196.
d=\frac{0±196}{2\times 49}
Take the square root of 38416.
d=\frac{0±196}{98}
Multiply 2 times 49.
d=2
Now solve the equation d=\frac{0±196}{98} when ± is plus. Divide 196 by 98.
d=-2
Now solve the equation d=\frac{0±196}{98} when ± is minus. Divide -196 by 98.
d=2 d=-2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}