Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i-2i^{2}}{1+i}
Multiply 1-2i times i.
\frac{i-2\left(-1\right)}{1+i}
By definition, i^{2} is -1.
\frac{2+i}{1+i}
Do the multiplications in i-2\left(-1\right). Reorder the terms.
\frac{\left(2+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(2+i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 1+2\left(-i\right)+i-i^{2}}{2}
Multiply complex numbers 2+i and 1-i like you multiply binomials.
\frac{2\times 1+2\left(-i\right)+i-\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{2-2i+i+1}{2}
Do the multiplications in 2\times 1+2\left(-i\right)+i-\left(-1\right).
\frac{2+1+\left(-2+1\right)i}{2}
Combine the real and imaginary parts in 2-2i+i+1.
\frac{3-i}{2}
Do the additions in 2+1+\left(-2+1\right)i.
\frac{3}{2}-\frac{1}{2}i
Divide 3-i by 2 to get \frac{3}{2}-\frac{1}{2}i.
Re(\frac{i-2i^{2}}{1+i})
Multiply 1-2i times i.
Re(\frac{i-2\left(-1\right)}{1+i})
By definition, i^{2} is -1.
Re(\frac{2+i}{1+i})
Do the multiplications in i-2\left(-1\right). Reorder the terms.
Re(\frac{\left(2+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2+i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(2+i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 1+2\left(-i\right)+i-i^{2}}{2})
Multiply complex numbers 2+i and 1-i like you multiply binomials.
Re(\frac{2\times 1+2\left(-i\right)+i-\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{2-2i+i+1}{2})
Do the multiplications in 2\times 1+2\left(-i\right)+i-\left(-1\right).
Re(\frac{2+1+\left(-2+1\right)i}{2})
Combine the real and imaginary parts in 2-2i+i+1.
Re(\frac{3-i}{2})
Do the additions in 2+1+\left(-2+1\right)i.
Re(\frac{3}{2}-\frac{1}{2}i)
Divide 3-i by 2 to get \frac{3}{2}-\frac{1}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}-\frac{1}{2}i is \frac{3}{2}.