Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-2i\right)^{2}+3-2i}{\left(1-2i\right)^{3}-1}
Do the additions in 2-2i+1.
\frac{-3-4i+3-2i}{\left(1-2i\right)^{3}-1}
Calculate 1-2i to the power of 2 and get -3-4i.
\frac{-6i}{\left(1-2i\right)^{3}-1}
Do the additions in -3-4i+3-2i.
\frac{-6i}{-11+2i-1}
Calculate 1-2i to the power of 3 and get -11+2i.
\frac{-6i}{-12+2i}
Subtract 1 from -11+2i to get -12+2i.
\frac{-6i\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -12-2i.
\frac{-12+72i}{148}
Do the multiplications in \frac{-6i\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)}.
-\frac{3}{37}+\frac{18}{37}i
Divide -12+72i by 148 to get -\frac{3}{37}+\frac{18}{37}i.
Re(\frac{\left(1-2i\right)^{2}+3-2i}{\left(1-2i\right)^{3}-1})
Do the additions in 2-2i+1.
Re(\frac{-3-4i+3-2i}{\left(1-2i\right)^{3}-1})
Calculate 1-2i to the power of 2 and get -3-4i.
Re(\frac{-6i}{\left(1-2i\right)^{3}-1})
Do the additions in -3-4i+3-2i.
Re(\frac{-6i}{-11+2i-1})
Calculate 1-2i to the power of 3 and get -11+2i.
Re(\frac{-6i}{-12+2i})
Subtract 1 from -11+2i to get -12+2i.
Re(\frac{-6i\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)})
Multiply both numerator and denominator of \frac{-6i}{-12+2i} by the complex conjugate of the denominator, -12-2i.
Re(\frac{-12+72i}{148})
Do the multiplications in \frac{-6i\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)}.
Re(-\frac{3}{37}+\frac{18}{37}i)
Divide -12+72i by 148 to get -\frac{3}{37}+\frac{18}{37}i.
-\frac{3}{37}
The real part of -\frac{3}{37}+\frac{18}{37}i is -\frac{3}{37}.