Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1\right)^{2}}{\sqrt{3}+i}
Subtract 2 from 1 to get -1.
\frac{1}{\sqrt{3}+i}
Calculate -1 to the power of 2 and get 1.
\frac{\sqrt{3}-i}{\left(\sqrt{3}+i\right)\left(\sqrt{3}-i\right)}
Rationalize the denominator of \frac{1}{\sqrt{3}+i} by multiplying numerator and denominator by \sqrt{3}-i.
\frac{\sqrt{3}-i}{\left(\sqrt{3}\right)^{2}-i^{2}}
Consider \left(\sqrt{3}+i\right)\left(\sqrt{3}-i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-i}{3+1}
Square \sqrt{3}. Square i.
\frac{\sqrt{3}-i}{4}
Subtract -1 from 3 to get 4.