Evaluate
\frac{\left(t-8\right)\left(t-5\right)\left(t-3\right)}{5200}
Expand
\frac{t^{3}}{5200}-\frac{t^{2}}{325}+\frac{79t}{5200}-\frac{3}{130}
Share
Copied to clipboard
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{\left(13-0\right)\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 1 to get 1.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 13 to get 13.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\times 10\left(13-8\right)\left(13-5\right)}
Subtract 3 from 13 to get 10.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\left(13-8\right)\left(13-5\right)}
Multiply 13 and 10 to get 130.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\times 5\left(13-5\right)}
Subtract 8 from 13 to get 5.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\left(13-5\right)}
Multiply 130 and 5 to get 650.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\times 8}
Subtract 5 from 13 to get 8.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Multiply 650 and 8 to get 5200.
\frac{\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Use the distributive property to multiply 1 by t-3.
\frac{\left(t^{2}-5t-3t+15\right)\left(t-8\right)}{5200}
Apply the distributive property by multiplying each term of t-3 by each term of t-5.
\frac{\left(t^{2}-8t+15\right)\left(t-8\right)}{5200}
Combine -5t and -3t to get -8t.
\frac{t^{3}-8t^{2}-8t^{2}+64t+15t-120}{5200}
Apply the distributive property by multiplying each term of t^{2}-8t+15 by each term of t-8.
\frac{t^{3}-16t^{2}+64t+15t-120}{5200}
Combine -8t^{2} and -8t^{2} to get -16t^{2}.
\frac{t^{3}-16t^{2}+79t-120}{5200}
Combine 64t and 15t to get 79t.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{\left(13-0\right)\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 1 to get 1.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 13 to get 13.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\times 10\left(13-8\right)\left(13-5\right)}
Subtract 3 from 13 to get 10.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\left(13-8\right)\left(13-5\right)}
Multiply 13 and 10 to get 130.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\times 5\left(13-5\right)}
Subtract 8 from 13 to get 5.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\left(13-5\right)}
Multiply 130 and 5 to get 650.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\times 8}
Subtract 5 from 13 to get 8.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Multiply 650 and 8 to get 5200.
\frac{\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Use the distributive property to multiply 1 by t-3.
\frac{\left(t^{2}-5t-3t+15\right)\left(t-8\right)}{5200}
Apply the distributive property by multiplying each term of t-3 by each term of t-5.
\frac{\left(t^{2}-8t+15\right)\left(t-8\right)}{5200}
Combine -5t and -3t to get -8t.
\frac{t^{3}-8t^{2}-8t^{2}+64t+15t-120}{5200}
Apply the distributive property by multiplying each term of t^{2}-8t+15 by each term of t-8.
\frac{t^{3}-16t^{2}+64t+15t-120}{5200}
Combine -8t^{2} and -8t^{2} to get -16t^{2}.
\frac{t^{3}-16t^{2}+79t-120}{5200}
Combine 64t and 15t to get 79t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}