Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{\left(13-0\right)\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 1 to get 1.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 13 to get 13.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\times 10\left(13-8\right)\left(13-5\right)}
Subtract 3 from 13 to get 10.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\left(13-8\right)\left(13-5\right)}
Multiply 13 and 10 to get 130.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\times 5\left(13-5\right)}
Subtract 8 from 13 to get 5.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\left(13-5\right)}
Multiply 130 and 5 to get 650.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\times 8}
Subtract 5 from 13 to get 8.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Multiply 650 and 8 to get 5200.
\frac{\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Use the distributive property to multiply 1 by t-3.
\frac{\left(t^{2}-5t-3t+15\right)\left(t-8\right)}{5200}
Apply the distributive property by multiplying each term of t-3 by each term of t-5.
\frac{\left(t^{2}-8t+15\right)\left(t-8\right)}{5200}
Combine -5t and -3t to get -8t.
\frac{t^{3}-8t^{2}-8t^{2}+64t+15t-120}{5200}
Apply the distributive property by multiplying each term of t^{2}-8t+15 by each term of t-8.
\frac{t^{3}-16t^{2}+64t+15t-120}{5200}
Combine -8t^{2} and -8t^{2} to get -16t^{2}.
\frac{t^{3}-16t^{2}+79t-120}{5200}
Combine 64t and 15t to get 79t.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{\left(13-0\right)\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 1 to get 1.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\left(13-3\right)\left(13-8\right)\left(13-5\right)}
Subtract 0 from 13 to get 13.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{13\times 10\left(13-8\right)\left(13-5\right)}
Subtract 3 from 13 to get 10.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\left(13-8\right)\left(13-5\right)}
Multiply 13 and 10 to get 130.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{130\times 5\left(13-5\right)}
Subtract 8 from 13 to get 5.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\left(13-5\right)}
Multiply 130 and 5 to get 650.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{650\times 8}
Subtract 5 from 13 to get 8.
\frac{1\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Multiply 650 and 8 to get 5200.
\frac{\left(t-3\right)\left(t-5\right)\left(t-8\right)}{5200}
Use the distributive property to multiply 1 by t-3.
\frac{\left(t^{2}-5t-3t+15\right)\left(t-8\right)}{5200}
Apply the distributive property by multiplying each term of t-3 by each term of t-5.
\frac{\left(t^{2}-8t+15\right)\left(t-8\right)}{5200}
Combine -5t and -3t to get -8t.
\frac{t^{3}-8t^{2}-8t^{2}+64t+15t-120}{5200}
Apply the distributive property by multiplying each term of t^{2}-8t+15 by each term of t-8.
\frac{t^{3}-16t^{2}+64t+15t-120}{5200}
Combine -8t^{2} and -8t^{2} to get -16t^{2}.
\frac{t^{3}-16t^{2}+79t-120}{5200}
Combine 64t and 15t to get 79t.