Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\left(2+\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{1-2\sqrt{3}+3}{\left(2+\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{\left(2+\sqrt{3}\right)^{2}}
Add 1 and 3 to get 4.
\frac{4-2\sqrt{3}}{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{4-2\sqrt{3}}{4+4\sqrt{3}+3}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{7+4\sqrt{3}}
Add 4 and 3 to get 7.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}
Rationalize the denominator of \frac{4-2\sqrt{3}}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}
The square of \sqrt{3} is 3.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}
Multiply 16 and 3 to get 48.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}
Subtract 48 from 49 to get 1.
\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Anything divided by one gives itself.
28-30\sqrt{3}+8\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply 4-2\sqrt{3} by 7-4\sqrt{3} and combine like terms.
28-30\sqrt{3}+8\times 3
The square of \sqrt{3} is 3.
28-30\sqrt{3}+24
Multiply 8 and 3 to get 24.
52-30\sqrt{3}
Add 28 and 24 to get 52.
\frac{1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\left(2+\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{1-2\sqrt{3}+3}{\left(2+\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{\left(2+\sqrt{3}\right)^{2}}
Add 1 and 3 to get 4.
\frac{4-2\sqrt{3}}{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{4-2\sqrt{3}}{4+4\sqrt{3}+3}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{7+4\sqrt{3}}
Add 4 and 3 to get 7.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}
Rationalize the denominator of \frac{4-2\sqrt{3}}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}
The square of \sqrt{3} is 3.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}
Multiply 16 and 3 to get 48.
\frac{\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}
Subtract 48 from 49 to get 1.
\left(4-2\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Anything divided by one gives itself.
28-30\sqrt{3}+8\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply 4-2\sqrt{3} by 7-4\sqrt{3} and combine like terms.
28-30\sqrt{3}+8\times 3
The square of \sqrt{3} is 3.
28-30\sqrt{3}+24
Multiply 8 and 3 to get 24.
52-30\sqrt{3}
Add 28 and 24 to get 52.