Solve for x
x=\frac{2048}{14490801}\approx 0.000141331
x=0
Graph
Share
Copied to clipboard
\left(\frac{1}{2}\right)^{-16}x=463705632x^{2}
Multiply both sides of the equation by 38642136.
65536x=463705632x^{2}
Calculate \frac{1}{2} to the power of -16 and get 65536.
65536x-463705632x^{2}=0
Subtract 463705632x^{2} from both sides.
x\left(65536-463705632x\right)=0
Factor out x.
x=0 x=\frac{2048}{14490801}
To find equation solutions, solve x=0 and 65536-463705632x=0.
\left(\frac{1}{2}\right)^{-16}x=463705632x^{2}
Multiply both sides of the equation by 38642136.
65536x=463705632x^{2}
Calculate \frac{1}{2} to the power of -16 and get 65536.
65536x-463705632x^{2}=0
Subtract 463705632x^{2} from both sides.
-463705632x^{2}+65536x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-65536±\sqrt{65536^{2}}}{2\left(-463705632\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -463705632 for a, 65536 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65536±65536}{2\left(-463705632\right)}
Take the square root of 65536^{2}.
x=\frac{-65536±65536}{-927411264}
Multiply 2 times -463705632.
x=\frac{0}{-927411264}
Now solve the equation x=\frac{-65536±65536}{-927411264} when ± is plus. Add -65536 to 65536.
x=0
Divide 0 by -927411264.
x=-\frac{131072}{-927411264}
Now solve the equation x=\frac{-65536±65536}{-927411264} when ± is minus. Subtract 65536 from -65536.
x=\frac{2048}{14490801}
Reduce the fraction \frac{-131072}{-927411264} to lowest terms by extracting and canceling out 64.
x=0 x=\frac{2048}{14490801}
The equation is now solved.
\left(\frac{1}{2}\right)^{-16}x=463705632x^{2}
Multiply both sides of the equation by 38642136.
65536x=463705632x^{2}
Calculate \frac{1}{2} to the power of -16 and get 65536.
65536x-463705632x^{2}=0
Subtract 463705632x^{2} from both sides.
-463705632x^{2}+65536x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-463705632x^{2}+65536x}{-463705632}=\frac{0}{-463705632}
Divide both sides by -463705632.
x^{2}+\frac{65536}{-463705632}x=\frac{0}{-463705632}
Dividing by -463705632 undoes the multiplication by -463705632.
x^{2}-\frac{2048}{14490801}x=\frac{0}{-463705632}
Reduce the fraction \frac{65536}{-463705632} to lowest terms by extracting and canceling out 32.
x^{2}-\frac{2048}{14490801}x=0
Divide 0 by -463705632.
x^{2}-\frac{2048}{14490801}x+\left(-\frac{1024}{14490801}\right)^{2}=\left(-\frac{1024}{14490801}\right)^{2}
Divide -\frac{2048}{14490801}, the coefficient of the x term, by 2 to get -\frac{1024}{14490801}. Then add the square of -\frac{1024}{14490801} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2048}{14490801}x+\frac{1048576}{209983313621601}=\frac{1048576}{209983313621601}
Square -\frac{1024}{14490801} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1024}{14490801}\right)^{2}=\frac{1048576}{209983313621601}
Factor x^{2}-\frac{2048}{14490801}x+\frac{1048576}{209983313621601}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1024}{14490801}\right)^{2}}=\sqrt{\frac{1048576}{209983313621601}}
Take the square root of both sides of the equation.
x-\frac{1024}{14490801}=\frac{1024}{14490801} x-\frac{1024}{14490801}=-\frac{1024}{14490801}
Simplify.
x=\frac{2048}{14490801} x=0
Add \frac{1024}{14490801} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}