Evaluate
2
Real Part
2
Share
Copied to clipboard
\frac{-67108864-67108864i}{\left(1-i\right)^{51}}
Calculate 1+i to the power of 53 and get -67108864-67108864i.
\frac{-67108864-67108864i}{-33554432-33554432i}
Calculate 1-i to the power of 51 and get -33554432-33554432i.
\frac{\left(-67108864-67108864i\right)\left(-33554432+33554432i\right)}{\left(-33554432-33554432i\right)\left(-33554432+33554432i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -33554432+33554432i.
\frac{4503599627370496}{2251799813685248}
Do the multiplications in \frac{\left(-67108864-67108864i\right)\left(-33554432+33554432i\right)}{\left(-33554432-33554432i\right)\left(-33554432+33554432i\right)}.
2
Divide 4503599627370496 by 2251799813685248 to get 2.
Re(\frac{-67108864-67108864i}{\left(1-i\right)^{51}})
Calculate 1+i to the power of 53 and get -67108864-67108864i.
Re(\frac{-67108864-67108864i}{-33554432-33554432i})
Calculate 1-i to the power of 51 and get -33554432-33554432i.
Re(\frac{\left(-67108864-67108864i\right)\left(-33554432+33554432i\right)}{\left(-33554432-33554432i\right)\left(-33554432+33554432i\right)})
Multiply both numerator and denominator of \frac{-67108864-67108864i}{-33554432-33554432i} by the complex conjugate of the denominator, -33554432+33554432i.
Re(\frac{4503599627370496}{2251799813685248})
Do the multiplications in \frac{\left(-67108864-67108864i\right)\left(-33554432+33554432i\right)}{\left(-33554432-33554432i\right)\left(-33554432+33554432i\right)}.
Re(2)
Divide 4503599627370496 by 2251799813685248 to get 2.
2
The real part of 2 is 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}