Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Calculate 1+i to the power of 4 and get -4.
\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Calculate 1-i to the power of 3 and get -2-2i.
\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Multiply both numerator and denominator of \frac{-4}{-2-2i} by the complex conjugate of the denominator, -2+2i.
\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Do the multiplications in \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Divide 8-8i by 8 to get 1-i.
1-i+\frac{-4}{\left(1+i\right)^{3}}
Calculate 1-i to the power of 4 and get -4.
1-i+\frac{-4}{-2+2i}
Calculate 1+i to the power of 3 and get -2+2i.
1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}
Multiply both numerator and denominator of \frac{-4}{-2+2i} by the complex conjugate of the denominator, -2-2i.
1-i+\frac{8+8i}{8}
Do the multiplications in \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
1-i+\left(1+i\right)
Divide 8+8i by 8 to get 1+i.
2
Add 1-i and 1+i to get 2.
Re(\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Calculate 1+i to the power of 4 and get -4.
Re(\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Calculate 1-i to the power of 3 and get -2-2i.
Re(\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Multiply both numerator and denominator of \frac{-4}{-2-2i} by the complex conjugate of the denominator, -2+2i.
Re(\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Do the multiplications in \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
Re(1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Divide 8-8i by 8 to get 1-i.
Re(1-i+\frac{-4}{\left(1+i\right)^{3}})
Calculate 1-i to the power of 4 and get -4.
Re(1-i+\frac{-4}{-2+2i})
Calculate 1+i to the power of 3 and get -2+2i.
Re(1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)})
Multiply both numerator and denominator of \frac{-4}{-2+2i} by the complex conjugate of the denominator, -2-2i.
Re(1-i+\frac{8+8i}{8})
Do the multiplications in \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
Re(1-i+\left(1+i\right))
Divide 8+8i by 8 to get 1+i.
Re(2)
Add 1-i and 1+i to get 2.
2
The real part of 2 is 2.