Evaluate
2
Real Part
2
Share
Copied to clipboard
\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Calculate 1+i to the power of 4 and get -4.
\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Calculate 1-i to the power of 3 and get -2-2i.
\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Multiply both numerator and denominator of \frac{-4}{-2-2i} by the complex conjugate of the denominator, -2+2i.
\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Do the multiplications in \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Divide 8-8i by 8 to get 1-i.
1-i+\frac{-4}{\left(1+i\right)^{3}}
Calculate 1-i to the power of 4 and get -4.
1-i+\frac{-4}{-2+2i}
Calculate 1+i to the power of 3 and get -2+2i.
1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}
Multiply both numerator and denominator of \frac{-4}{-2+2i} by the complex conjugate of the denominator, -2-2i.
1-i+\frac{8+8i}{8}
Do the multiplications in \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
1-i+\left(1+i\right)
Divide 8+8i by 8 to get 1+i.
2
Add 1-i and 1+i to get 2.
Re(\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Calculate 1+i to the power of 4 and get -4.
Re(\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Calculate 1-i to the power of 3 and get -2-2i.
Re(\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Multiply both numerator and denominator of \frac{-4}{-2-2i} by the complex conjugate of the denominator, -2+2i.
Re(\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Do the multiplications in \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
Re(1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Divide 8-8i by 8 to get 1-i.
Re(1-i+\frac{-4}{\left(1+i\right)^{3}})
Calculate 1-i to the power of 4 and get -4.
Re(1-i+\frac{-4}{-2+2i})
Calculate 1+i to the power of 3 and get -2+2i.
Re(1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)})
Multiply both numerator and denominator of \frac{-4}{-2+2i} by the complex conjugate of the denominator, -2-2i.
Re(1-i+\frac{8+8i}{8})
Do the multiplications in \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
Re(1-i+\left(1+i\right))
Divide 8+8i by 8 to get 1+i.
Re(2)
Add 1-i and 1+i to get 2.
2
The real part of 2 is 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}