\frac { ( 0,5 m ^ { - 3 } n ^ { 2 } ) ^ { - 2 } \cdot ( m ^ { 2 } ) ^ { 4 } } { ( 4 m ^ { - 2 } n ^ { - 3 } ) ^ { 2 } } =
Evaluate
\frac{n^{2}m^{18}}{4}
Expand
\frac{n^{2}m^{18}}{4}
Share
Copied to clipboard
\frac{\left(0,5m^{-3}n^{2}\right)^{-2}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{0,5^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
Expand \left(0,5m^{-3}n^{2}\right)^{-2}.
\frac{0,5^{-2}m^{6}\left(n^{2}\right)^{-2}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{0,5^{-2}m^{6}n^{-4}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{4m^{6}n^{-4}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
Calculate 0,5 to the power of -2 and get 4.
\frac{4m^{14}n^{-4}}{\left(4m^{-2}n^{-3}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
\frac{4m^{14}n^{-4}}{4^{2}\left(m^{-2}\right)^{2}\left(n^{-3}\right)^{2}}
Expand \left(4m^{-2}n^{-3}\right)^{2}.
\frac{4m^{14}n^{-4}}{4^{2}m^{-4}\left(n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{4m^{14}n^{-4}}{4^{2}m^{-4}n^{-6}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{4m^{14}n^{-4}}{16m^{-4}n^{-6}}
Calculate 4 to the power of 2 and get 16.
\frac{n^{-4}m^{14}}{4n^{-6}m^{-4}}
Cancel out 4 in both numerator and denominator.
\frac{n^{2}m^{18}}{4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(0,5m^{-3}n^{2}\right)^{-2}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{0,5^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
Expand \left(0,5m^{-3}n^{2}\right)^{-2}.
\frac{0,5^{-2}m^{6}\left(n^{2}\right)^{-2}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{0,5^{-2}m^{6}n^{-4}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{4m^{6}n^{-4}m^{8}}{\left(4m^{-2}n^{-3}\right)^{2}}
Calculate 0,5 to the power of -2 and get 4.
\frac{4m^{14}n^{-4}}{\left(4m^{-2}n^{-3}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
\frac{4m^{14}n^{-4}}{4^{2}\left(m^{-2}\right)^{2}\left(n^{-3}\right)^{2}}
Expand \left(4m^{-2}n^{-3}\right)^{2}.
\frac{4m^{14}n^{-4}}{4^{2}m^{-4}\left(n^{-3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{4m^{14}n^{-4}}{4^{2}m^{-4}n^{-6}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{4m^{14}n^{-4}}{16m^{-4}n^{-6}}
Calculate 4 to the power of 2 and get 16.
\frac{n^{-4}m^{14}}{4n^{-6}m^{-4}}
Cancel out 4 in both numerator and denominator.
\frac{n^{2}m^{18}}{4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}