\frac { ( - x + 6 } { 2 } \leq \frac { 2 x + 1 } { 3 }
Solve for x
x\geq \frac{16}{7}
Graph
Share
Copied to clipboard
3\left(-x+6\right)\leq 2\left(2x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3\left(-x\right)+18\leq 2\left(2x+1\right)
Use the distributive property to multiply 3 by -x+6.
3\left(-x\right)+18\leq 4x+2
Use the distributive property to multiply 2 by 2x+1.
3\left(-x\right)+18-4x\leq 2
Subtract 4x from both sides.
3\left(-x\right)-4x\leq 2-18
Subtract 18 from both sides.
3\left(-x\right)-4x\leq -16
Subtract 18 from 2 to get -16.
-3x-4x\leq -16
Multiply 3 and -1 to get -3.
-7x\leq -16
Combine -3x and -4x to get -7x.
x\geq \frac{-16}{-7}
Divide both sides by -7. Since -7 is negative, the inequality direction is changed.
x\geq \frac{16}{7}
Fraction \frac{-16}{-7} can be simplified to \frac{16}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}