Evaluate
-\frac{33}{10}=-3.3
Factor
-\frac{33}{10} = -3\frac{3}{10} = -3.3
Share
Copied to clipboard
-5-\frac{1}{5}\times \frac{-10}{1}-\frac{3}{10}\times \frac{3}{1}\times \frac{1}{3}
Anything divided by one gives itself.
-5-\frac{1}{5}\left(-10\right)-\frac{3}{10}\times \frac{3}{1}\times \frac{1}{3}
Anything divided by one gives itself.
-5-\frac{-10}{5}-\frac{3}{10}\times \frac{3}{1}\times \frac{1}{3}
Multiply \frac{1}{5} and -10 to get \frac{-10}{5}.
-5-\left(-2\right)-\frac{3}{10}\times \frac{3}{1}\times \frac{1}{3}
Divide -10 by 5 to get -2.
-5+2-\frac{3}{10}\times \frac{3}{1}\times \frac{1}{3}
The opposite of -2 is 2.
-3-\frac{3}{10}\times \frac{3}{1}\times \frac{1}{3}
Add -5 and 2 to get -3.
-3-\frac{3}{10}\times 3\times \frac{1}{3}
Anything divided by one gives itself.
-3-\frac{3\times 3}{10}\times \frac{1}{3}
Express \frac{3}{10}\times 3 as a single fraction.
-3-\frac{9}{10}\times \frac{1}{3}
Multiply 3 and 3 to get 9.
-3-\frac{9\times 1}{10\times 3}
Multiply \frac{9}{10} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-3-\frac{9}{30}
Do the multiplications in the fraction \frac{9\times 1}{10\times 3}.
-3-\frac{3}{10}
Reduce the fraction \frac{9}{30} to lowest terms by extracting and canceling out 3.
-\frac{30}{10}-\frac{3}{10}
Convert -3 to fraction -\frac{30}{10}.
\frac{-30-3}{10}
Since -\frac{30}{10} and \frac{3}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{33}{10}
Subtract 3 from -30 to get -33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}