Evaluate
-\frac{6}{zw^{2}}
Differentiate w.r.t. z
\frac{6}{\left(wz\right)^{2}}
Share
Copied to clipboard
\frac{-4yw^{2}t\left(-3\right)xz^{2}\left(-t^{2}\right)}{\left(-x\right)yz^{3}w^{2}t^{3}\left(-2\right)w^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{-4yw^{2}t\left(-3\right)xz^{2}\left(-t^{2}\right)}{\left(-x\right)yz^{3}w^{4}t^{3}\left(-2\right)}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{-3\left(-2\right)x\left(-t^{2}\right)}{-\left(-x\right)zt^{2}w^{2}}
Cancel out 2tyw^{2}z^{2} in both numerator and denominator.
\frac{6x\left(-t^{2}\right)}{-\left(-x\right)zt^{2}w^{2}}
Multiply -3 and -2 to get 6.
\frac{6x\left(-t^{2}\right)}{xzt^{2}w^{2}}
Multiply -1 and -1 to get 1.
\frac{6\left(-t^{2}\right)}{zt^{2}w^{2}}
Cancel out x in both numerator and denominator.
\frac{-6t^{2}}{zt^{2}w^{2}}
Factor the expressions that are not already factored.
\frac{-6}{zw^{2}}
Cancel out t^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}