Evaluate
-\frac{9}{4xy}
Differentiate w.r.t. x
\frac{9}{4yx^{2}}
Share
Copied to clipboard
\frac{-3x^{3}\times 2y^{2}\times 6y}{8x^{3}y\times 2xy^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{-3x^{3}\times 2y^{3}\times 6}{8x^{3}y\times 2xy^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{-3x^{3}\times 2y^{3}\times 6}{8x^{4}y\times 2y^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{-3x^{3}\times 2y^{3}\times 6}{8x^{4}y^{4}\times 2}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{-3\times 3}{2\times 2xy}
Cancel out 2\times 2x^{3}y^{3} in both numerator and denominator.
\frac{-9}{2\times 2xy}
Multiply -3 and 3 to get -9.
\frac{-9}{4xy}
Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{36xy^{3}}{16xy^{4}}\right)x^{2-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{9}{4y}\right)\times \frac{1}{x})
Do the arithmetic.
-\left(-\frac{9}{4y}\right)x^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{9}{4y}x^{-2}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}