Verify
false
Share
Copied to clipboard
\frac{\left(-1\right)^{17}\left(-1\right)^{4}}{\left(-1\right)^{6}\left(-1\right)^{2}\left(-1\right)^{8}}=\left(-1\right)^{5}\text{ and }\left(-1\right)^{5}=-5
To multiply powers of the same base, add their exponents. Add 7 and 10 to get 17.
\frac{\left(-1\right)^{21}}{\left(-1\right)^{6}\left(-1\right)^{2}\left(-1\right)^{8}}=\left(-1\right)^{5}\text{ and }\left(-1\right)^{5}=-5
To multiply powers of the same base, add their exponents. Add 17 and 4 to get 21.
\frac{\left(-1\right)^{21}}{\left(-1\right)^{8}\left(-1\right)^{8}}=\left(-1\right)^{5}\text{ and }\left(-1\right)^{5}=-5
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\left(-1\right)^{21}}{\left(-1\right)^{16}}=\left(-1\right)^{5}\text{ and }\left(-1\right)^{5}=-5
To multiply powers of the same base, add their exponents. Add 8 and 8 to get 16.
\left(-1\right)^{5}=\left(-1\right)^{5}\text{ and }\left(-1\right)^{5}=-5
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 16 from 21 to get 5.
\text{true}\text{ and }\left(-1\right)^{5}=-5
As \left(-1\right)^{5} and \left(-1\right)^{5} have the same base, compare them by comparing their exponents.
\text{true}\text{ and }-1=-5
Calculate -1 to the power of 5 and get -1.
\text{true}\text{ and }\text{false}
Compare -1 and -5.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}