Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2-i+2i+i^{2}}{-1}
Multiply complex numbers -1+i and 2+i like you multiply binomials.
\frac{-2-i+2i-1}{-1}
By definition, i^{2} is -1.
\frac{-2-1+\left(-1+2\right)i}{-1}
Combine the real and imaginary parts in -2-i+2i-1.
\frac{-3+i}{-1}
Do the additions in -2-1+\left(-1+2\right)i.
3-i
Divide -3+i by -1 to get 3-i.
Re(\frac{-2-i+2i+i^{2}}{-1})
Multiply complex numbers -1+i and 2+i like you multiply binomials.
Re(\frac{-2-i+2i-1}{-1})
By definition, i^{2} is -1.
Re(\frac{-2-1+\left(-1+2\right)i}{-1})
Combine the real and imaginary parts in -2-i+2i-1.
Re(\frac{-3+i}{-1})
Do the additions in -2-1+\left(-1+2\right)i.
Re(3-i)
Divide -3+i by -1 to get 3-i.
3
The real part of 3-i is 3.