Evaluate
3-i
Real Part
3
Share
Copied to clipboard
\frac{-2-i+2i+i^{2}}{-1}
Multiply complex numbers -1+i and 2+i like you multiply binomials.
\frac{-2-i+2i-1}{-1}
By definition, i^{2} is -1.
\frac{-2-1+\left(-1+2\right)i}{-1}
Combine the real and imaginary parts in -2-i+2i-1.
\frac{-3+i}{-1}
Do the additions in -2-1+\left(-1+2\right)i.
3-i
Divide -3+i by -1 to get 3-i.
Re(\frac{-2-i+2i+i^{2}}{-1})
Multiply complex numbers -1+i and 2+i like you multiply binomials.
Re(\frac{-2-i+2i-1}{-1})
By definition, i^{2} is -1.
Re(\frac{-2-1+\left(-1+2\right)i}{-1})
Combine the real and imaginary parts in -2-i+2i-1.
Re(\frac{-3+i}{-1})
Do the additions in -2-1+\left(-1+2\right)i.
Re(3-i)
Divide -3+i by -1 to get 3-i.
3
The real part of 3-i is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}