Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{\left(1+i\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+i\sqrt{3}\right)^{2}.
\frac{1-2i\sqrt{3}-3}{\left(1+i\right)^{2}}
The square of \sqrt{3} is 3.
\frac{-2-2i\sqrt{3}}{\left(1+i\right)^{2}}
Subtract 3 from 1 to get -2.
\frac{-2-2i\sqrt{3}}{2i}
Calculate 1+i to the power of 2 and get 2i.
\frac{1-2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{\left(1+i\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+i\sqrt{3}\right)^{2}.
\frac{1-2i\sqrt{3}-3}{\left(1+i\right)^{2}}
The square of \sqrt{3} is 3.
\frac{-2-2i\sqrt{3}}{\left(1+i\right)^{2}}
Subtract 3 from 1 to get -2.
\frac{-2-2i\sqrt{3}}{2i}
Calculate 1+i to the power of 2 and get 2i.