Evaluate
-\sqrt{3}+i\approx -1.732050808+i
Expand
-\sqrt{3}+i
Quiz
Complex Number
5 problems similar to:
\frac { ( - 1 + \sqrt { 3 } i ) ^ { 2 } } { ( 1 + i ) ^ { 2 } }
Share
Copied to clipboard
\frac{1-2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{\left(1+i\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+i\sqrt{3}\right)^{2}.
\frac{1-2i\sqrt{3}-3}{\left(1+i\right)^{2}}
The square of \sqrt{3} is 3.
\frac{-2-2i\sqrt{3}}{\left(1+i\right)^{2}}
Subtract 3 from 1 to get -2.
\frac{-2-2i\sqrt{3}}{2i}
Calculate 1+i to the power of 2 and get 2i.
\frac{1-2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{\left(1+i\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+i\sqrt{3}\right)^{2}.
\frac{1-2i\sqrt{3}-3}{\left(1+i\right)^{2}}
The square of \sqrt{3} is 3.
\frac{-2-2i\sqrt{3}}{\left(1+i\right)^{2}}
Subtract 3 from 1 to get -2.
\frac{-2-2i\sqrt{3}}{2i}
Calculate 1+i to the power of 2 and get 2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}