\frac { ( - \frac { 2 } { 3 } ) ( 2 - 6 \cdot 1 \frac { 1 } { 3 } ) } { 3 \frac { 3 } { 5 } + 1,2 : \frac { 3 } { 5 } }
Evaluate
\frac{5}{7}\approx 0,714285714
Factor
\frac{5}{7} = 0.7142857142857143
Share
Copied to clipboard
\frac{-\frac{2}{3}\left(2-6\times \frac{3+1}{3}\right)}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Multiply 1 and 3 to get 3.
\frac{-\frac{2}{3}\left(2-6\times \frac{4}{3}\right)}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Add 3 and 1 to get 4.
\frac{-\frac{2}{3}\left(2-\frac{6\times 4}{3}\right)}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Express 6\times \frac{4}{3} as a single fraction.
\frac{-\frac{2}{3}\left(2-\frac{24}{3}\right)}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Multiply 6 and 4 to get 24.
\frac{-\frac{2}{3}\left(2-8\right)}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Divide 24 by 3 to get 8.
\frac{-\frac{2}{3}\left(-6\right)}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Subtract 8 from 2 to get -6.
\frac{\frac{-2\left(-6\right)}{3}}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Express -\frac{2}{3}\left(-6\right) as a single fraction.
\frac{\frac{12}{3}}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Multiply -2 and -6 to get 12.
\frac{4}{\frac{3\times 5+3}{5}+\frac{1,2}{\frac{3}{5}}}
Divide 12 by 3 to get 4.
\frac{4}{\frac{15+3}{5}+\frac{1,2}{\frac{3}{5}}}
Multiply 3 and 5 to get 15.
\frac{4}{\frac{18}{5}+\frac{1,2}{\frac{3}{5}}}
Add 15 and 3 to get 18.
\frac{4}{\frac{18}{5}+1,2\times \frac{5}{3}}
Divide 1,2 by \frac{3}{5} by multiplying 1,2 by the reciprocal of \frac{3}{5}.
\frac{4}{\frac{18}{5}+\frac{6}{5}\times \frac{5}{3}}
Convert decimal number 1,2 to fraction \frac{12}{10}. Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{4}{\frac{18}{5}+\frac{6\times 5}{5\times 3}}
Multiply \frac{6}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{\frac{18}{5}+\frac{6}{3}}
Cancel out 5 in both numerator and denominator.
\frac{4}{\frac{18}{5}+2}
Divide 6 by 3 to get 2.
\frac{4}{\frac{18}{5}+\frac{10}{5}}
Convert 2 to fraction \frac{10}{5}.
\frac{4}{\frac{18+10}{5}}
Since \frac{18}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{4}{\frac{28}{5}}
Add 18 and 10 to get 28.
4\times \frac{5}{28}
Divide 4 by \frac{28}{5} by multiplying 4 by the reciprocal of \frac{28}{5}.
\frac{4\times 5}{28}
Express 4\times \frac{5}{28} as a single fraction.
\frac{20}{28}
Multiply 4 and 5 to get 20.
\frac{5}{7}
Reduce the fraction \frac{20}{28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}