Evaluate
\frac{\sqrt{35}}{14}-\frac{1}{2}\approx -0.077422873
Factor
\frac{\sqrt{35} - 7}{14} = -0.0774228726357417
Share
Copied to clipboard
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}-\frac{\sqrt{5}-\sqrt{7}}{\sqrt{28}}
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\sqrt{5}-\sqrt{7}}{\sqrt{28}}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\sqrt{5}-\sqrt{7}}{2\sqrt{7}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{7}}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{2\times 7}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{14}
Multiply 2 and 7 to get 14.
\frac{1}{14}\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}
Combine \frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7} and -\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{14} to get \frac{1}{14}\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}.
\left(\frac{1}{14}\sqrt{5}+\frac{1}{14}\left(-1\right)\sqrt{7}\right)\sqrt{7}
Use the distributive property to multiply \frac{1}{14} by \sqrt{5}-\sqrt{7}.
\left(\frac{1}{14}\sqrt{5}-\frac{1}{14}\sqrt{7}\right)\sqrt{7}
Multiply \frac{1}{14} and -1 to get -\frac{1}{14}.
\frac{1}{14}\sqrt{5}\sqrt{7}-\frac{1}{14}\sqrt{7}\sqrt{7}
Use the distributive property to multiply \frac{1}{14}\sqrt{5}-\frac{1}{14}\sqrt{7} by \sqrt{7}.
\frac{1}{14}\sqrt{5}\sqrt{7}-\frac{1}{14}\times 7
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{1}{14}\sqrt{35}-\frac{1}{14}\times 7
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{1}{14}\sqrt{35}+\frac{-7}{14}
Express -\frac{1}{14}\times 7 as a single fraction.
\frac{1}{14}\sqrt{35}-\frac{1}{2}
Reduce the fraction \frac{-7}{14} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}