Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}-\frac{\sqrt{5}-\sqrt{7}}{\sqrt{28}}
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\sqrt{5}-\sqrt{7}}{\sqrt{28}}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\sqrt{5}-\sqrt{7}}{2\sqrt{7}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{7}}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{2\times 7}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7}-\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{14}
Multiply 2 and 7 to get 14.
\frac{1}{14}\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}
Combine \frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{7} and -\frac{\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}}{14} to get \frac{1}{14}\left(\sqrt{5}-\sqrt{7}\right)\sqrt{7}.
\left(\frac{1}{14}\sqrt{5}+\frac{1}{14}\left(-1\right)\sqrt{7}\right)\sqrt{7}
Use the distributive property to multiply \frac{1}{14} by \sqrt{5}-\sqrt{7}.
\left(\frac{1}{14}\sqrt{5}-\frac{1}{14}\sqrt{7}\right)\sqrt{7}
Multiply \frac{1}{14} and -1 to get -\frac{1}{14}.
\frac{1}{14}\sqrt{5}\sqrt{7}-\frac{1}{14}\sqrt{7}\sqrt{7}
Use the distributive property to multiply \frac{1}{14}\sqrt{5}-\frac{1}{14}\sqrt{7} by \sqrt{7}.
\frac{1}{14}\sqrt{5}\sqrt{7}-\frac{1}{14}\times 7
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{1}{14}\sqrt{35}-\frac{1}{14}\times 7
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{1}{14}\sqrt{35}+\frac{-7}{14}
Express -\frac{1}{14}\times 7 as a single fraction.
\frac{1}{14}\sqrt{35}-\frac{1}{2}
Reduce the fraction \frac{-7}{14} to lowest terms by extracting and canceling out 7.