Evaluate
\frac{\sqrt{3}-i}{2}\approx 0.866025404-0.5i
Real Part
\frac{\sqrt{3}}{2} = 0.8660254037844386
Share
Copied to clipboard
\frac{\left(2-2i\right)\sqrt{3}+\left(2+2i\right)}{\left(\sqrt{3}-i\right)\left(2+2i\right)}
Use the distributive property to multiply \sqrt{3}+i by 2-2i.
\frac{\left(2-2i\right)\sqrt{3}+\left(2+2i\right)}{\left(2+2i\right)\sqrt{3}+\left(2-2i\right)}
Use the distributive property to multiply \sqrt{3}-i by 2+2i.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{\left(\left(2+2i\right)\sqrt{3}+\left(2-2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}
Rationalize the denominator of \frac{\left(2-2i\right)\sqrt{3}+\left(2+2i\right)}{\left(2+2i\right)\sqrt{3}+\left(2-2i\right)} by multiplying numerator and denominator by \left(2+2i\right)\sqrt{3}+\left(-2+2i\right).
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{\left(\left(2+2i\right)\sqrt{3}\right)^{2}-\left(2-2i\right)^{2}}
Consider \left(\left(2+2i\right)\sqrt{3}+\left(2-2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{\left(2+2i\right)^{2}\left(\sqrt{3}\right)^{2}-\left(2-2i\right)^{2}}
Expand \left(\left(2+2i\right)\sqrt{3}\right)^{2}.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{8i\left(\sqrt{3}\right)^{2}-\left(2-2i\right)^{2}}
Calculate 2+2i to the power of 2 and get 8i.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{8i\times 3-\left(2-2i\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{24i-\left(2-2i\right)^{2}}
Multiply 8i and 3 to get 24i.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{24i-\left(-8i\right)}
Calculate 2-2i to the power of 2 and get -8i.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{24i+8i}
Multiply -1 and -8i to get 8i.
\frac{\left(\left(2-2i\right)\sqrt{3}+\left(2+2i\right)\right)\left(\left(2+2i\right)\sqrt{3}+\left(-2+2i\right)\right)}{32i}
Add 24i and 8i to get 32i.
\frac{8\left(\sqrt{3}\right)^{2}+8i\sqrt{3}+8i\sqrt{3}-8}{32i}
Apply the distributive property by multiplying each term of \left(2-2i\right)\sqrt{3}+\left(2+2i\right) by each term of \left(2+2i\right)\sqrt{3}+\left(-2+2i\right).
\frac{8\times 3+8i\sqrt{3}+8i\sqrt{3}-8}{32i}
The square of \sqrt{3} is 3.
\frac{24+8i\sqrt{3}+8i\sqrt{3}-8}{32i}
Multiply 8 and 3 to get 24.
\frac{24+16i\sqrt{3}-8}{32i}
Combine 8i\sqrt{3} and 8i\sqrt{3} to get 16i\sqrt{3}.
\frac{16+16i\sqrt{3}}{32i}
Subtract 8 from 24 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}